Chaos, Fractals and Bifurcation in Real Dynamics of Two-Parameter Family Associated to Logarithmic Functions
Main Article Content
Abstract
The purpose of this article is to provide bifurcation diagrams and observe chaotic behaviour in the real dynamics of two-parameter family of function \(\Phi(x)=x+(1-\lambda x)\ln(ax): x>0, \lambda>0, a>0\). We consider here parameter a is a positive and continuous real parameter while λ is positive but a discrete real parameter. The dynamical properties of this nonlinear system family analyze numerically as well as graphically by using fixed point iterative method. Bifurcation diagrams for the real dynamics of the function are plotted by varying the values of the parameter which are fractals in nature. Also, we show that chaos exists in the dynamics of the function by looking at period-doubling in the bifurcation diagram. Further, chaotic behaviour studies by simulation of the positive Lyapunov exponents which observe by varying the parameters similar to the bifurcation diagrams.
Article Details
References
- M. Abdelmoula, B. Robert, Bifurcations and Chaos in a Photovoltaic Plant, Int. J. Bifurcation Chaos 29 (2019), 1950102. https://doi.org/10.1142/S0218127419501025.
- T. Banakh, M. Nowak, F. Strobin, Embedding Fractals in Banach, Hilbert or Euclidean Spaces, Journal of Fractal Geometry, Math. Fractals Relat. Top. 7 (2020), 351–386. https://doi.org/10.4171/jfg/94.
- Y. Bi, H. Yuan, S.-H. Chang, Dynamic Correlation Analysis of Regional Logistics from the Perspective of Multifractal Feature, Fractals 28 (2020), 2040015. https://doi.org/10.1142/S0218348X20400150.
- V.S. Deshpande, A. Needleman, E. Van Der Giessen, Dislocation Dynamics Is Chaotic, Scr. Mater. 45 (2001), 1047–1053. https://doi.org/10.1016/S1359-6462(01)01135-6.
- S.N. Elaydi, Discrete Chaos: With Applications in Science and Engineering, Chapman and Hall/CRC, 2011. https://doi.org/10.1201/9781420011043.
- A. Husain, M.N. Nanda, M.S. Chowdary, M. Sajid, Fractals: An Eclectic Survey, Part-I, Fractal Fract. 6 (2022), 89. https://doi.org/10.3390/fractalfract6020089.
- A. Husain, M.N. Nanda, M.S. Chowdary, M. Sajid, Fractals: An Eclectic Survey, Part II, Fractal Fract. 6 (2022), 379. https://doi.org/10.3390/fractalfract6070379.
- G.P. Kapoor, M. Guru Prem Prasad, Dynamics of (e z − 1)/z: The Julia Set and Bifurcation, Ergodic Theory Dyn. Syst. 18 (1998), 1363–1383. https://doi.org/10.1017/S0143385798118011.
- N. Kaur, K. Goyal, Uncertainty Quantification of Stochastic Epidemic SIR Models Using B-Spline Polynomial Chaos, Regul. Chaotic Dyn. 26 (2021), 22–38. https://doi.org/10.1134/S1560354721010020.
- S. Khajanchi, M. Perc, D. Ghosh, The Influence of Time Delay in a Chaotic Cancer Model, Chaos 28 (2018), 103101. https://doi.org/10.1063/1.5052496.
- L. Dobrescu, M. Neamtu, D. Opris, Bifurcation and Chaos Analysis in a Discrete-Delay Dynamic Model for a Stock Market, Int. J. Bifurcat. Chaos 23 (2013), 1350155. https://doi.org/10.1142/S0218127413501551.
- L.A. Bunimovich, L.V. Vela-Arevalo, Some New Surprises in Chaos, Chaos 25 (2015), 097614. https://doi.org/10.1063/1.4916330.
- M. Lakshmanan, S. Rajasekar, Nonlinear Dynamics: Integrability, Chaos, and Patterns, Springer, Berlin, 2003.
- K. Li, H. Bao, H. Li, J. Ma, Z. Hua, B. Bao, Memristive Rulkov Neuron Model With Magnetic Induction Effects, IEEE Trans. Ind. Inform. 18 (2022), 1726–1736. https://doi.org/10.1109/TII.2021.3086819.
- D. Lim, Fixed Points and Dynamics on Generating Function of Genocchi Numbers, J. Nonlinear Sci. Appl. 09 (2016), 933–939. https://doi.org/10.22436/jnsa.009.03.22.
- B.B. Mandelbrot, The Fractal Geometry of Nature, W.H. Freeman, San Francisco, 1982.
- S. Manjunath, A. Podapati, G. Raina, Stability, Convergence, Limit Cycles and Chaos in Some Models of Population Dynamics, Nonlinear Dyn. 87 (2017), 2577–2595. https://doi.org/10.1007/s11071-016-3212-4.
- P. Manneville, Instabilities, Chaos and Turbulence: An Introduction to Nonlinear Dynamics and Complex Systems, Imperial College Press, London, 2004.
- F. Martínez-Giménez, A. Peris, F. Rodenas, Chaos on Fuzzy Dynamical Systems, Mathematics 9 (2021), 2629. https://doi.org/10.3390/math9202629.
- A. Naanaa, Fast Chaotic Optimization Algorithm Based on Spatiotemporal Maps for Global Optimization, Appl. Math. Comput. 269 (2015), 402–411. https://doi.org/10.1016/j.amc.2015.07.111.
- T. Onozaki, One-Dimensional Nonlinear Cobweb Model, in: Nonlinearity, Bounded Rationality, and Heterogeneity, Springer Japan, Tokyo, 2018: pp. 25–77. https://doi.org/10.1007/978-4-431-54971-0_2.
- Y. Peng, S. He, K. Sun, A Higher Dimensional Chaotic Map with Discrete Memristor, AEU - Int. J. Electron. Commun. 129 (2021), 153539. https://doi.org/10.1016/j.aeue.2020.153539.
- A. Pikovsky and A. Politi, Lyapunov Exponents: A Tool to Explore Complex Dynamics, Cambridge University Press, 2016.
- D.J. Prajapati, S. Rawat, A. Tomar, M. Sajid, R.C. Dimri, A Brief Study on Julia Sets in the Dynamics of Entire Transcendental Function Using Mann Iterative Scheme, Fractal Fract. 6 (2022), 397. https://doi.org/10.3390/fractalfract6070397.
- M. Sajid, Bifurcation and Chaos in Real Dynamics of a Two-Parameter Family Arising from Generating Function of Generalized Apostol-Type Polynomials, Math. Comput. Appl. 23 (2018), 7. https://doi.org/10.3390/mca23010007.
- M. Sajid, Chaotic Behavior in Real Dynamics and Singular Values of Family of Generalized Generating Function of Apostol-Genocchi Numbers, J. Math. Comput. Sci. 19 (2019), 41–50. https://doi.org/10.22436/jmcs.019.01.06.
- M. Sajid, Chaotic Behaviour and Bifurcation in Real Dynamics of Two-Parameter Family of Functions Including Logarithmic Map, Abstr. Appl. Anal. 2020 (2020), 7917184. https://doi.org/10.1155/2020/7917184.
- M. Sajid, G.P. Kapoor, Dynamics of a Family of Transcendental Meromorphic Functions Having Rational Schwarzian Derivative, J. Math. Anal. Appl. 326 (2007), 1356–1369. https://doi.org/10.1016/j.jmaa.2006.02.089.
- L. Stumpf, Chaotic Behaviour in the Newton Iterative Function Associated With Kepler Equation, Celest. Mech. Dyn. Astron. 74 (1999), 95-109. https://doi.org/10.1023/A:1008339416143.
- J.M.T. Thompson, Chaos, Fractals and Their Applications, Int. J. Bifurcation Chaos 26 (2016), 1630035. https://doi.org/10.1142/S0218127416300354.
- Y. Tian, G. Cui, H. Morris, Digital Imaging Based on Fractal Theory and Its Spatial Dimensionality, Fractals 28 (2020), 2040014. https://doi.org/10.1142/S0218348X20400149.
- J. Wang, W. Shao, J. Kim, ECG Classification Comparison between MF-DFA and MF-DXA, Fractals 29 (2021), 2150029. https://doi.org/10.1142/S0218348X21500298.
- K.-J. Wang, K.-L. Wang, Variational Principles for Fractal Whitham–Broer–Kaup Equations in Shallow Water, Fractals 29 (2021), 2150028. https://doi.org/10.1142/S0218348X21500286.
- J. Wu, X. Liao, B. Yang, Image Encryption Using 2D Hénon-Sine Map and DNA Approach, Signal Process. 153 (2018), 11–23. https://doi.org/10.1016/j.sigpro.2018.06.008.
- Y. Zhou, Z. Hua, C.-M. Pun, C.L.P. Chen, Cascade Chaotic System With Applications, IEEE Trans. Cybern. 45 (2015), 2001–2012. https://doi.org/10.1109/TCYB.2014.2363168.
- Z. Zhou, J.-P. Wu, Particle Motion and Chaos, Adv. High Energy Phys. 2020 (2020), 1670362. https://doi.org/10.1155/2020/1670362.