Controllability of Intuitionistic Fuzzy Impulsive Neutral Integro-Differential Equations with Nonlocal Conditions

Main Article Content

T. Gunasekar, J. Thiravidarani, Rania Saadeh, Ahmad Qazza, Junaid Ahmad, Ghassan Abufoudeh

Abstract

This paper explores the controllability of nonlocal intuitionistic fuzzy integro-differential equations using intuitionistic fuzzy semigroups and the contraction mapping principle. By establishing a clear theoretical approach, we show that it is possible to achieve controllability under specific conditions. This study offers new methods and significant insights into the analysis of fuzzy systems. The results demonstrate that, given the right conditions, controlling systems with nonlocal features is feasible, addressing important challenges in this area.

Article Details

References

  1. R. Saadeh, O. Ala’yed, A. Qazza, Analytical Solution of Coupled Hirota–Satsuma and KdV Equations, Fractal and Fractional 6 (2022), 694. https://doi.org/10.3390/fractalfract6120694.
  2. A.B.M. Alzahrani, R. Saadeh, M.A. Abdoon, M. Elbadri, M. Berir, A. Qazza, Effective Methods for Numerical Analysis of the Simplest Chaotic Circuit Model with Atangana–Baleanu Caputo Fractional Derivative, J. Eng. Math. 144 (2024), 9. https://doi.org/10.1007/s10665-023-10319-x.
  3. A. Hazaymeh, R. Saadeh, R. Hatamleh, M.W. Alomari, A. Qazza, A Perturbed Milne’s Quadrature Rule for n-Times Differentiable Functions with L p -Error Estimates, Axioms 12 (2023), 803. https://doi.org/10.3390/axioms12090803.
  4. S. Melliani, M. Elomari, L.S. Chadli, R. Ettoussi, Intuitionistic Fuzzy Metric Space, Notes IFS 21 (2015), 43–53.
  5. S.A. Altaie, N. Anakira, A. Jameel, O. Ababneh, A. Qazza, A.K. Alomari, Homotopy Analysis Method Analytical Scheme for Developing a Solution to Partial Differential Equations in Fuzzy Environment, Fractal Fract. 6 (2022), 419. https://doi.org/10.3390/fractalfract6080419.
  6. O. Kaleva, Fuzzy Differential Equations, Fuzzy Sets Syst. 24 (1987), 301–317. https://doi.org/10.1016/0165-0114(87)90029-7.
  7. J.U. Jeong, Fuzzy Differential Equations With Nonlocal Condition, J. Appl. Math. Comput. 17 (2005), 509–517.
  8. Y. Feng, Fuzzy Stochastic Differential Systems, Fuzzy Sets Syst. 115 (2000), 351–363. https://doi.org/10.1016/S0165-0114(98)00389-3.
  9. E. Szmidt, J. Kacprzyk, Distances between Intuitionistic Fuzzy Sets, Fuzzy Sets Syst. 114 (2000), 505–518. https://doi.org/10.1016/S0165-0114(98)00244-9.
  10. H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, 2010. https://doi.org/10.1007/978-0-387-70914-7.
  11. L.S. Chadli, S. Melliani, On Distance Between Intuitionistic Fuzzy Sets, Notes IFS 8 (2002), 34–36.
  12. P. Grzegorzewski, Distances between Intuitionistic Fuzzy Sets and/or Interval-Valued Fuzzy Sets Based on the Hausdorff Metric, Fuzzy Sets Syst. 148 (2004), 319–328. https://doi.org/10.1016/j.fss.2003.08.005.
  13. M.L. Puri, D.A. Ralescu, Fuzzy Random Variables, J. Math. Anal. Appl. 114 (1986), 409–422. https://doi.org/10.1016/0022-247X(86)90093-4.
  14. R. Saadati, J.H. Park, On the Intuitionistic Fuzzy Topological Spaces, Chaos Solitons Fractals 27 (2006), 331–344. https://doi.org/10.1016/j.chaos.2005.03.019.
  15. T. Gunasekar, F. P. Samuel, and M. M. Arjunan, Existence Results for Impulsive Neutral Functional Integrodifferential Equation With Infinite Delay, J. Nonlinear Sci. Appl. 6 (2013), 234–243.
  16. T. Gunasekar, F.P. Samuel, M.M. Arjunan, Existence of Solutions for Impulsive Partial Neutral Functional Evolution Integrodifferential Inclusions With Infinite Delay, Int. J. Pure Appl. Math. 85 (2013), 939–954. https://doi.org/10.12732/ijpam.v85i5.12.
  17. S. Manimaran, Existence of Solutions for Neutral Functional Integrodifferential Evolution Equations with Non Local Conditions, Indian J. Sci. Technol. 8 (2015), 358–363. https://doi.org/10.17485/ijst/2015/v8i4/60133.
  18. T. Gunasekar, F.P. Samuel, M.M. Arjunan, Controllability of Impulsive Partial Neutral Functional IntegroDifferential Systems With Infinite Delay, Int. J. Appl. Eng. Res. 8 (2013), 1103–1115.
  19. M.L. Suresh, T. Gunasekar, F.P. Samuel, Existence Results for Nonlocal Impulsive Neutral Functional IntegroDifferential Equations, Int. J. Pure Appl. Math. 116 (2017), 337–345.
  20. F. Acharya, V. Kushawaha, J. Panchal, D. Chalishajar, Controllability of Fuzzy Solutions for Neutral Impulsive Functional Differential Equations with Nonlocal Conditions, Axioms 10 (2021), 84. https://doi.org/10.3390/axioms10020084.
  21. N. S, N. M, Existence and Controllability Result for the Nonlinear First Order Fuzzy Neutral Integrodifferential Equations with Nonlocal Conditions, Int. J. Fuzzy Logic Syst. 3 (2013), 39–53. https://doi.org/10.5121/ijfls.2013.3304.
  22. M. Nagarajan, K. Karthik, Controllability Results for Nonlinear Impulsive Functional Neutral Integrodifferential Equations in n-Dimensional Fuzzy Vector Space, Appl. Appl. Math.: Int. J. 17 (2022), 17–30.
  23. T. Gunasekar, M. Angayarkanni, K.R. Salini, Existence and Controllability Results for Impulsive Neutral MixedType Functional Integrodifferential Systems With Infinite Delay, J. Adv. Res. Dyn. Control Syst. 10 (2018), 449–458.
  24. T. Gunasekar, K.A. Venkatesan, R. Shanmugapriya, K. Nithyanandhan, Results for Damped Second-Order Neutral Integral Equation With Impulses and Infinite Delay, Adv. Math.: Sci. J. 8 (2019), 683–691.
  25. T. Gunasekar, M. Angayarkanni, S. Yasotha, Controllability Results for Impulsive Neutral Stochastic Functional Integrodifferential Inclusions With Infinite Delay, Int. J. Pure Appl. Math. 116 (2017), 311–326.
  26. T. Gunasekar, M.M. Arjunan, F.P. Samuel, Controllability of Impulsive Partial Neutral Functional Integrodifferential Systems With Infinite Delay, Int. J. Appl. Eng. Res. 8 (2013), 1103–1115.
  27. A.U.K. Niazi, N. Iqbal, R. Shah, F. Wannalookkhee, K. Nonlaopon, Controllability for Fuzzy Fractional Evolution Equations in Credibility Space, Fractal Fract. 5 (2021), 112. https://doi.org/10.3390/fractalfract5030112.
  28. K. Abuasbeh, R. Shafqat, A. Alsinai, M. Awadalla, Analysis of Controllability of Fractional Functional Random Integroevolution Equations with Delay, Symmetry 15 (2023), 290. https://doi.org/10.3390/sym15020290.
  29. A. Georgieva, Double Fuzzy Sumudu Transform to Solve Partial Volterra Fuzzy Integro-Differential Equations, Mathematics 8 (2020), 692. https://doi.org/10.3390/math8050692.
  30. P.B. Dhandapani, J. Thippan, C. Martin-Barreiro, V. Leiva, C. Chesneau, Numerical Solutions of a Differential System Considering a Pure Hybrid Fuzzy Neutral Delay Theory, Electronics 11 (2022), 1478. https://doi.org/10.3390/electronics11091478.
  31. T. Gunasekar, J. Thiravidarani, M. Mahdal, P. Raghavendran, A. Venkatesan, M. Elangovan, Study of Non-Linear Impulsive Neutral Fuzzy Delay Differential Equations with Non-Local Conditions, Mathematics 11 (2023), 3734. https://doi.org/10.3390/math11173734.
  32. F.I. Chou, T.H. Huang, P.Y. Yang, et al. Controllability of Fractional-Order Particle Swarm Optimizer and Its Application in the Classification of Heart Disease, Appl. Sci. 11 (2021), 11517. https://doi.org/10.3390/app112311517.
  33. H.M. Ahmed, M.M. El-Borai, H.M. El-Owaidy, A.S. Ghanem, Existence Solution and Controllability of Sobolev Type Delay Nonlinear Fractional Integro-Differential System, Mathematics 7 (2019), 79. https://doi.org/10.3390/math7010079.
  34. D.N. Chalishajar, A. Kumar, Total Controllability of the Second Order Semi-Linear Differential Equation with Infinite Delay and Non-Instantaneous Impulses, Math. Comput. Appl. 23 (2018), 32. https://doi.org/10.3390/mca23030032.
  35. M.D. Johansyah, A.K. Supriatna, E. Rusyaman, J. Saputra, The Existence and Uniqueness of Riccati Fractional Differential Equation Solution and Its Approximation Applied to an Economic Growth Model, Mathematics 10 (2022), 3029. https://doi.org/10.3390/math10173029.
  36. B. Telli, M.S. Souid, J. Alzabut, H. Khan, Existence and Uniqueness Theorems for a Variable-Order Fractional Differential Equation with Delay, Axioms 12 (2023), 339. https://doi.org/10.3390/axioms12040339.
  37. O. Tunç, C. Tunç, J.-C. Yao, Global Existence and Uniqueness of Solutions of Integral Equations with Multiple Variable Delays and Integro Differential Equations: Progressive Contractions, Mathematics 12 (2024), 171. https://doi.org/10.3390/math12020171.
  38. B. Ahmad, Y. Alruwaily, A. Alsaedi, S. K. Ntouyas, Existence and Stability Results for a Fractional Order Differential Equation with Non-Conjugate Riemann-Stieltjes Integro-Multipoint Boundary Conditions, Mathematics 7 (2019), 249. https://doi.org/10.3390/math7030249.
  39. A. Mohammed Djaouti, Z.A. Khan, M.I. Liaqat, A. Al-Quran, Existence, Uniqueness, and Averaging Principle of Fractional Neutral Stochastic Differential Equations in the Lp Space with the Framework of the Ψ-Caputo Derivative, Mathematics 12 (2024), 1037. https://doi.org/10.3390/math12071037.
  40. O. Algahtani, Ulam Stability of Fractional Hybrid Sequential Integro-Differential Equations with Existence and Uniqueness Theory, Symmetry 14 (2022), 2438. https://doi.org/10.3390/sym14112438.
  41. A. Hazaymeh, A. Qazza, R. Hatamleh, M.W. Alomari, R. Saadeh, On Further Refinements of Numerical Radius Inequalities, Axioms 12 (2023), 807. https://doi.org/10.3390/axioms12090807.
  42. M. Abu-Ghuwaleh, R. Saadeh, A. Qazza, A Novel Approach in Solving Improper Integrals, Axioms 11 (2022), 572. https://doi.org/10.3390/axioms11100572.
  43. T. Qawasmeh, A. Qazza, R. Hatamleh, M.W. Alomari, R. Saadeh, Further Accurate Numerical Radius Inequalities, Axioms 12 (2023), 801. https://doi.org/10.3390/axioms12080801.