Modelling Extreme Rainfall using Extended Generalized Extreme Value Distribution
Main Article Content
Abstract
This study assesses the performance of extended generalized extreme value (GEV) distribution based on Kumaraswamy generalized extreme value (KumGEV) distribution using the maximum likelihood estimates on extreme rainfall data obtained from a weather station in Phitsanulok province, a total of 408 months during January 1987 to December 2021. The findings indicate that the KumGEV distribution provides a better fit than the traditional GEV distribution, with estimated parameters µ = 41.4966 (SE = 0.6015), σ = 8.9467 (SE = 0.0797), ξ = −0.0502 (SE = 0.0308), a = 0.0310 (SE = 0.0060), and b = 0.2738 (SE = 0.0155). Additionally, the analysis of return levels derived from both GEV and KumGEV distributions shows an upward trend over return periods of 10, 20, 50, and 100 years, highlighting significant changes in rainfall patterns over time.
Article Details
References
- S. El Adlouni, T.B.M.J. Ouarda, X. Zhang, R. Roy, B. Bobée, Generalized Maximum Likelihood Estimators for the Nonstationary Generalized Extreme Value Model, Water Resour. Res. 43 (2007), 2005WR004545. https://doi.org/10.1029/2005WR004545.
- P. Busababodhin, A. Kaewmun, Extreme Values Statistics, J. King Mongkut’s Univ. Technol. North Bangkok, 25 (2015), 55–65.
- G. Chen, N. Balakrishnan, A General Purpose Approximate Goodness-of-Fit Test, J. Qual. Technol. 27 (1995), 154–161. https://doi.org/10.1080/00224065.1995.11979578.
- D. Chikobvu, R. Chifurira, Modelling of Extreme Minimum Rainfall Using Generalised Extreme Value Distribution for Zimbabwe, S. Afr. J. Sci. 111 (2015), 8. https://doi.org/10.17159/sajs.2015/20140271.
- G.M. Cordeiro, M. De Castro, A New Family of Generalized Distributions, J. Stat. Comput. Simul. 81 (2011), 883–898. https://doi.org/10.1080/00949650903530745.
- N. Deetae, Analysis and Mathematical Modeling for Flood Surveillance from Rainfall by Extreme Value Theory for Agriculture in Phitsanulok Province, Thailand, Eur. J. Pure Appl. Math. 15 (2022), 1797–1807. https://doi.org/10.29020/nybg.ejpam.v15i4.4558.
- D.J. Dupuis, S. Engelke, L. Trapin, Modeling Panels of Extremes, Ann. Appl. Stat. 17 (2023), 498-517. https://doi.org/10.1214/22-AOAS1639.
- S. Eljabri, S. Nadarajah, The Kumaraswamy GEV Distribution, Commun. Stat. - Theory Methods 46 (2017), 10203–10235. https://doi.org/10.1080/03610926.2016.1231815.
- L. Gao, B. Tao, Y. Miao, et al. A Global Data Set for Economic Losses of Extreme Hydrological Events During 1960-2014, Water Resour. Res. 55 (2019), 5165–5175. https://doi.org/10.1029/2019WR025135.
- E. Gilleland, M. Ribatet, A.G. Stephenson, A Software Review for Extreme Value Analysis, Extremes 16 (2013), 103–119. https://doi.org/10.1007/s10687-012-0155-0.
- C.T. Guloksuz, N. Celik, An Extension of Generalized Extreme Value Distribution: Uniform-GEV Distribution and Its Application to Earthquake Data, Thail. Stat. 18 (2000), 491-506.
- I.E. Augustine, A.T. Akinlolu, Flood Disaster:an Empirical Survey of Causative Factors and Preventive Measures in Kaduna, Nigeria, Int. J. Environ. Pollut. Res. 3 (2015), 53–56.
- C. Jones, D.E. Waliser, K.M. Lau, W. Stern, Global Occurrences of Extreme Precipitation and the Madden–Julian Oscillation: Observations and Predictability, J. Clim. 17 (2004), 4575–4589. https://doi.org/10.1175/3238.1.
- J.L. Martel, M. Alain, B. Francois, Global and Regional Projected Changes in 100-yr Subdaily, Daily, and Multiday Precipitation Extremes Estimated From Three Large Ensembles of Climate Simulations, J. Clim. 33 (2020), 1089–1103. https://doi.org/10.1175/JCLI-D-18-0764.s1.
- M.M.Q. Mirza, Global Warming and Changes in the Probability of Occurrence of Floods in Bangladesh and Implications, Glob. Environ. Change 12 (2002), 127–138. https://doi.org/10.1016/S0959-3780(02)00002-X.
- F.C. Onwuegbuche, A.B. Kenyatta, S.B. Affognon, et al. Application of Extreme Value Theory in Predicting Climate Change Induced Extreme Rainfall in Kenya, Int. J. Stat. Probab. 8 (2019), 85–94.
- C. Rohrbeck, E.F. Eastoe, A. Frigessi, J.A. Tawn, Extreme Value Modelling of Water-Related Insurance Claims, Ann. Appl. Stat. 12 (2018), 246-282. https://doi.org/10.1214/17-AOAS1081.
- S.B. Sunday, N.S. Agog, P. Magdalene, et al. Modeling Extreme Rainfall in Kaduna Using the Generalised Extreme Value Distribution, Sci. World J. 15 (2020), 73–77. https://doi.org/10.47514/swj/15.03.2020.010.
- C.S. Withers, S. Nadarajah, Evidence of Trend in Return Levels for Daily Rainfall in New Zealand, J. Hydrol. (N. Z.) 39 (2000), 155–166. https://www.jstor.org/stable/43944839.