Upper and Lower Weakly Quasi \((\tau_1,\tau_2)\)-Continuous Multifunctions
Main Article Content
Abstract
This paper presents new classes of multifunctions called upper weakly quasi (τ1, τ2)-continuous multifunctions and lower weakly quasi (τ1, τ2)-continuous multifunctions. Moreover, several characterizations and some properties concerning upper weakly quasi (τ1, τ2)-continuous multifunctions and lower weakly quasi (τ1, τ2)-continuous multifunctions are considered.
Article Details
References
- S.P. Arya, M.P. Bhamini, Some Weaker Forms of Semi-Continuous Functions, Ganita, 33 (1982), 124–134.
- T. Bânzaru, N. Crivat, Structures Uniformes Sur L’espace Des Parties D’un Espace Uniforme Et Quasicontinuité Des Applications Multivoques, Bul. St. Tehn. Inst. Politehn. "Traian Vuia", Timi¸soara, Ser. Mat. Fiz. Mec. Teor. Apl. 20 (1975), 135–136.
- C. Boonpok, J. Khampakdee, Almost Strong θ(Λ, p)-Continuity for Functions, Eur. J. Pure Appl. Math. 17 (2024), 300–309. https://doi.org/10.29020/nybg.ejpam.v17i1.4975.
- C. Boonpok, N. Srisarakham, (τ1, τ2)-Continuity for Functions, Asia Pac. J. Math. 11 (2024), 21. https://doi.org/10.28924/APJM/11-21.
- C. Boonpok, P. Pue-On, Characterizations of Almost (τ1, τ2)-Continuous Functions, Int. J. Anal. Appl. 22 (2024), 33. https://doi.org/10.28924/2291-8639-22-2024-33.
- C. Boonpok, J. Khampakdee, Upper and Lower α-?-Continuity, Eur. J. Pure Appl. Math. 17 (2024), 201–211. https://doi.org/10.29020/nybg.ejpam.v17i1.4858.
- C. Boonpok, C. Klanarong, On Weakly (τ1, τ2)-Continuous Functions, Eur. J. Pure Appl. Math. 17 (2024), 416–425. https://doi.org/10.29020/nybg.ejpam.v17i1.4976.
- C. Boonpok, θ(?)-Precontinuity, Mathematica, 65 (2023), 31–42. https://doi.org/10.24193/mathcluj.2023.1.04.
- C. Boonpok, N. Srisarakham, Weak Forms of (Λ, b)-Open Sets and Weak (Λ, b)-Continuity, Eur. J. Pure Appl. Math. 16 (2023), 29–43. https://doi.org/10.29020/nybg.ejpam.v16i1.4571.
- C. Boonpok, P. Pue-on, Upper and Lower Weakly (Λ,sp)-Continuous Multifunctions, Eur. J. Pure Appl. Math. 16 (2023), 1047–1058. https://doi.org/10.29020/nybg.ejpam.v16i2.4573.
- C. Boonpok, P. Pue-on, Upper and Lower sβ(?)-Continuous Multifunctions, Eur. J. Pure Appl. Math. 16 (2023), 1634–1646. https://doi.org/10.29020/nybg.ejpam.v16i3.4732.
- C. Boonpok, J. Khampakdee, Upper and Lower Weak sβ(?)-Continuity, Eur. J. Pure Appl. Math. 16 (2023), 2544– 2556. https://doi.org/10.29020/nybg.ejpam.v16i4.4734.
- C. Boonpok, P. Pue-on, Upper and Lower Weakly α-?-Continuous Multifunctions, Int. J. Anal. Appl. 21 (2023), 90. https://doi.org/10.28924/2291-8639-21-2023-90.
- C. Boonpok, N. Srisarakham, Almost α-?-Continuity for Multifunctions, Int. J. Anal. Appl. 21 (2023), 107. https://doi.org/10.28924/2291-8639-21-2023-107.
- C. Boonpok, on Some Spaces via Topological Ideals, Open Math. 21 (2023), 20230118. https://doi.org/10.1515/math-2023-0118.
- C. Boonpok, J. Khampakdee, On Almost α(Λ,sp)-Continuous Multifunctions, Eur. J. Pure Appl. Math. 15 (2022), 626–634. https://doi.org/10.29020/nybg.ejpam.v15i2.4277.
- C. Boonpok, θ(?)-Quasi Continuity for Multifunctions, WSEAS Trans. Math. 21 (2022), 245–251. https://doi.org/10.37394/23206.2022.21.29.
- C. Boonpok, J. Khampakdee, (Λ,sp)-Open Sets in Topological Spaces, Eur. J. Pure Appl. Math. 15 (2022), 572–588. https://doi.org/10.29020/nybg.ejpam.v15i2.4276.
- C. Boonpok, Upper and Lower β(?)-Continuity, Heliyon, 7 (2021), e05986. https://doi.org/10.1016/j.heliyon.2021.e05986.
- C. Boonpok, C. Viriyapong, Upper and Lower Almost Weak (τ1, τ2)-Continuity, Eur. J. Pure Appl. Math. 14 (2021), 1212–1225. https://doi.org/10.29020/nybg.ejpam.v14i4.4072.
- C. Boonpok, P. Pue-On, Continuity for Multifunctions in Ideal Topological Spaces, WSEAS Trans. Math. 19 (2021), 624–631. https://doi.org/10.37394/23206.2020.19.69.
- C. Boonpok, on Characterizations of ?-Hyperconnected Ideal Topological Spaces, J. Math. 2020 (2020), 9387601. https://doi.org/10.1155/2020/9387601.
- C. Boonpok, (τ1, τ2)δ-Semicontinuous Multifunctions, Heliyon, 6 (2020), e05367. https://doi.org/10.1016/j.heliyon.2020.e05367.
- C. Boonpok, Weak Quasi Continuity for Multifunctions in Ideal Topological Spaces, Adv. Math.: Sci. J. 9 (2020), 339–355.
- C. Boonpok, on Continuous Multifunctions in Ideal Topological Spaces, Lobachevskii J. Math. 40 (2019), 24–35. https://doi.org/10.1134/s1995080219010049.
- C. Boonpok, C. Viriyapong, M. Thongmoon, on Upper and Lower (τ1, τ2)-Precontinuous Multifunctions, J. Math. Computer Sci. 18 (2018), 282–293. https://doi.org/10.22436/jmcs.018.03.04.
- C. Boonpok, Almost (G, m)-Continuous Functions, Int. J. Math. Anal. 4 (2010), 1957–1964.
- C. Boonpok, M-Continuous Functions in Biminimal Structure Spaces, Far East J. Math. Sci. 43 (2010), 41–58.
- M. Chiangpradit, S. Sompong, C. Boonpok, Weakly Quasi (τ1, τ2)-Continuous Functions, Int. J. Anal. Appl. 22 (2024), 125. https://doi.org/10.28924/2291-8639-22-2024-125.
- T. Duangphui, C. Boonpok and C. Viriyapong, Continuous Functions on Bigeneralized Topological Spaces, Int. J. Math. Anal. 5 (2011), 1165–1174.
- W. Dungthaisong, C. Boonpok, C. Viriyapong, Generalized Closed Sets in Bigeneralized Topological Spaces, Int. J. Math. Anal. 5 (2011), 1175–1184.
- A. Kar, P. Bhattacharyya, Weakly Semi-Continuous Functions, J. Indian Acad. Math. 8 (1986), 83–93.
- J. Khampakdee, S. Sompong, C. Boonpok, c-(τ1, τ2)-Continuity for Multifunctions, Eur. J. Pure Appl. Math. 17 (2024), 2288–2298. https://doi.org/10.29020/nybg.ejpam.v17i3.5320.
- J. Khampakdee, C. Boonpok, Upper and Lower α(Λ,sp)-Continuous Multifunctions, WSEAS Trans. Math. 21 (2022), 684–690. https://doi.org/10.37394/23206.2022.21.80.
- C. Klanarong, S. Sompong, C. Boonpok, Upper and Lower Almost (τ1, τ2)-Continuous Multifunctions, Eur. J. Pure Appl. Math. 17 (2024), 1244–1253. https://doi.org/10.29020/nybg.ejpam.v17i2.5192.
- B. Kong-ied, A. Sama-Ae and C. Boonpok, Almost Nearly (τ1, τ2)-Continuous Functions, Int. J. Anal. Appl. 23 (2025), 14. https://doi.org/10.28924/2291-8639-23-2025-14.
- B. Kong-ied, S. Sompong, C. Boonpok, Almost Quasi (τ1, τ2)-Continuous Functions, Asia Pac. J. Math. 11 (2024), 64. https://doi.org/10.28924/APJM/11-64.
- K. Laprom, C. Boonpok, C. Viriyapong, β(τ1, τ2)-Continuous Multifunctions on Bitopological Spaces, J. Math. 2020 (2020), 4020971. https://doi.org/10.1155/2020/4020971.
- N. Levine, Semi-Open Sets and Semi-Continuity in Topological Spaces, Amer. Math. Mon. 70 (1963), 36–41. https://doi.org/10.1080/00029890.1963.11990039.
- N. Levine, A Decomposition of Continuity in Topological Spaces, Amer. Math. Mon. 68 (1961), 44–46. https://doi.org/10.2307/2311363.
- S. Marcus, Sur les Fonctions Quasicontinues au Sense de S. Kempisty, Colloq. Math. 8 (1961), 47–53. http://eudml.org/doc/210887.
- A. Neubrunnová, on Certain Generalizations of the Notion of Continuity, Mat. casopis, 23 (1973), 374–380. http://dml.cz/dmlcz/126571.
- T. Noiri, v. Popa, Some Properties of Upper and Lower Θ-Quasi Continuous Multifunctions, Demonstr. Math. 38 (2005), 223–234. https://doi.org/10.1515/dema-2005-0124.
- T. Noiri, v. Popa, Weakly Quasi Continuous Multifunctions, Anal. Univ. Timi¸soara, Ser. St. Mat. 26 (1988), 33–38.
- T. Noiri, Properties of Some Weak Forms of Continuity, Int. J. Math. Math. Sci. 10 (1987), 97–111.
- V. Popa, T. Noiri, Almost Quasi Continuous Multifunctions, Tatra Mt. Math. Publ. 14 (1998), 81–90.
- V. Popa, T. Noiri, on θ-Quasi Continuous Multifunctions, Demonstr. Math. 28 (1995), 111–122.
- V. Popa, on a Decomposition of Quasicontinuity in Topological Spaces, Stud. Cerc. Mat. 30 (1978), 31–35.
- V. Popa, C. Stan, on a Decomposition of Quasicontinuity in Topological Spaces, Stud. Cerc. Mat. 25 (1973), 41–43.
- P. Pue-on, C. Boonpok, θ(Λ, p)-Continuity for Functions, Int. J. Math. Comput. Sci. 19 (2024), 491–495.
- P. Pue-on, S. Sompong, C. Boonpok, Weakly Quasi (τ1, τ2)-Continuous Multifunctions, Eur. J. Pure Appl. Math. 17 (2024), 1553–1564. https://doi.org/10.29020/nybg.ejpam.v17i3.5191.
- P. Pue-on, S. Sompong, C. Boonpok, Almost Quasi (τ1, τ2)-Continuity for Multifunctions, Int. J. Anal. Appl. 22 (2024), 97. https://doi.org/10.28924/2291-8639-22-2024-97.
- P. Pue-on, S. Sompong, C. Boonpok, Upper and Lower (τ1, τ2)-Continuous Mulfunctions, Int. J. Math. Comput. Sci. 19 (2024), 1305–1310.
- N. Srisarakham, S. Sompong, C. Boonpok, Quasi θ(τ1, τ2)-Continuous Functions, Eur. J. Pure Appl. Math. 18 (2025), 5722. https://doi.org/10.29020/nybg.ejpam.v18i1.5722.
- N. Srisarakham, C. Boonpok, Almost (Λ, p)-Continuous Functions, Int. J. Math. Comput. Sci. 18 (2023), 255–259.
- M. Thongmoon, C. Boonpok, Strongly θ(Λ, p)-Continuous Functions, Int. J. Math. Comput. Sci. 19 (2024), 475–479.
- M. Thongmoon, S. Sompong, C. Boonpok, Upper and Lower Weak (τ1, τ2)-Continuity, Eur. J. Pure Appl. Math. 17 (2024), 1705–1716. https://doi.org/10.29020/nybg.ejpam.v17i3.5238.
- M. Thongmoon and C. Boonpok, Upper and Lower Almost β(Λ,sp)-Continuous Multifunctions, WSEAS Trans. Math. 21 (2022), 844–853. https://doi.org/10.37394/23206.2022.21.96.
- N. Viriyapong, S. Sompong, C. Boonpok, Upper and Lower s-(τ1, τ2)p-Continuous Multifunctions, Eur. J. Pure Appl. Math. 17 (2024), 2210–2220.
- C. Viriyapong, C. Boonpok, Weak Quasi (Λ,sp)-Continuity for Multifunctions, Int. J. Math. Comput. Sci. 17 (2022), 1201–1209.
- C. Viriyapong, C. Boonpok, (Λ,sp)-Continuous Functions, WSEAS Trans. Math. 21 (2022), 380–385. https://doi.org/10.37394/23206.2022.21.45.
- C. Viriyapong, C. Boonpok, (τ1, τ2)α-Continuity for Multifunctions, J. Math. 2020 (2020), 6285763. https://doi.org/10.1155/2020/6285763.