An Efficient Numerical Technique for Solving the Korteweg-de Vries-Burgers Equation
Main Article Content
Abstract
Nonlinear partial differential equations, such as the Korteweg-de Vries-Burgers equation (KDVB), receive extensive study in a multitude of fields of engineering and physics. This study presents the Variational Homotopy Perturbation Method (VHPM) as a robust numerical technique for approximating solutions to the KDVB equation. The technique integrates the Variational Iteration Method (VIM) with the Homotopy Perturbation Method (HPM), providing an efficient solution without requiring the discretization or linearization of the equation. The efficacy of the proposed scheme is demonstrated through various problems, with the accuracy of the method being assessed using absolute errors in the and error norms. The results indicate that the proposed method is straightforward to implement and provides superior outcomes compared to the existing schemes documented in the literature. This study offers a substantial contribution to the advancement of numerical techniques for solving nonlinear partial differential equations, providing beneficial applications across diverse scientific and engineering fields.
Article Details
References
- C.H. Su, C.S. Gardner, Korteweg-de Vries Equation and Generalizations. III. Derivation of the Korteweg-de Vries Equation and Burgers Equation, J. Math. Phys. 10 (1969), 536–539. https://doi.org/10.1063/1.1664873.
- N. Cheemaa, A.R. Seadawy, T.G. Sugati, D. Baleanu, Study of the Dynamical Nonlinear Modified Korteweg–de Vries Equation Arising in Plasma Physics and Its Analytical Wave Solutions, Results Phys. 19 (2020), 103480. https://doi.org/10.1016/j.rinp.2020.103480.
- A. Ankiewicz, M. Bokaeeyan, N. Akhmediev, Shallow-Water Rogue Waves: An Approach Based on Complex Solutions of the Korteweg–de Vries Equation, Phys. Rev. E 99 (2019), 050201. https://doi.org/10.1103/PhysRevE.99.050201.
- H. Bateman, Some Recent Researches on The Motion of Fluids, Mon. Weather Rev. 43 (1915), 163–170. https://doi.org/10.1175/1520-0493(1915)43<163:SRROTM>2.0.CO;2.
- J.D. Cole, On a Quasi Linear Parabolic Equations Occurring in Aerodynamics, Q. Appl. Math. 9 (1951), 225-236.
- C. Yonti Madie, F. Kamga Togue, P. Woafo, Numerical Solution of the Burgers Equation Associated with the Phenomena of Longitudinal Dispersion Depending on Time, Heliyon 8 (2022), e09776. https://doi.org/10.1016/j.heliyon.2022.e09776.
- T. Musha, H. Higuchi, Traffic Current Fluctuation and the Burgers Equation, Jpn. J. Appl. Phys. 17 (1978), 811–816. https://doi.org/10.1143/JJAP.17.811.
- T. Nagatani, Density Waves in Traffic Flow, Phys. Rev. E 61 (2000), 3564–3570. https://doi.org/10.1103/PhysRevE.61.3564.
- N. Su, J.P.C. Watt, K.W. Vincent, M.E. Close, R. Mao, Analysis of Turbulent Flow Patterns of Soil Water under Field Conditions Using Burgers Equation and Porous Suction-Cup Samplers, Soil Res. 42 (2004), 9-16. https://doi.org/10.1071/SR02142.
- E. Ben-Naim, S.Y. Chen, G.D. Doolen, S. Redner, Shocklike Dynamics of Inelastic Gases, Physi. Rev. Lett. 83 (1999), 4069–4072. https://doi.org/10.1103/PhysRevLett.83.4069.
- S.F. Shandarin, Ya.B. Zeldovich, The Large-Scale Structure of the Universe: Turbulence, Intermittency, Structures in a Self-Gravitating Medium, Rev. Mod. Phys. 61 (1989), 185–220. https://doi.org/10.1103/RevModPhys.61.185.
- J. Bec, K. Khanin, Burgers Turbulence, Phys. Rep. 447 (2007), 1–66. https://doi.org/10.1016/j.physrep.2007.04.002.
- R.S. Johnson, Nonlinear Waves in Fluid-Filled Elastic Tubes and Related Problems, PhD Thesis, University of London, London, (1969).
- L.V. Wijngaarden, One-Dimensional Flow of Liquids Containing Small Gas Bubbles, Annu. Rev. Fluid Mech. 4 (1972), 369–396. https://doi.org/10.1146/annurev.fl.04.010172.002101.
- G. Gao, A Theory of Interaction Between Dissipation and Dispersion of Turbulence, Sci. Sin. Ser. A. 28 (1985), 616-627.
- S.D. Liu, S.K. Liu, KdV-Burgers Equation Modelling of Turbulence, Sci. Sin. Ser. A. 35 (1992), 576-586.
- R.S. Johnson, A Non-Linear Equation Incorporating Damping and Dispersion, J. Fluid Mech. 42 (1970), 49–60. https://doi.org/10.1017/S0022112070001064.
- H. Demiray, Nonlinear Waves in a Thick-Walled Viscoelastic Tube Filled with an Inviscid Fluid, Int. J. Eng. Sci. 36 (1998), 345–357. https://doi.org/10.1016/S0020-7225(97)00056-6.
- H. Demiray, N. Antar, Nonlinear Waves in an Inviscid Fluid Contained in a Prestressed Viscoelastic Thin Tube, Z. Angew. Math. Phys. 48 (1997), 325-340. https://doi.org/10.1007/s000330050034.
- A.H.A. Ali, L.R.T. Gardner, G. Gardner, Numerical Studies of the Korteweg–de Vries–Burgers Equation Using B-Spline Finite Elements. J. Math. Phys. Sci. 27 (1993), 37–53.
- J. Canosa, J. Gazdag, The Korteweg-de Vries-Burgers Equation, J. Comput. Phys. 23 (1977), 393–403. https://doi.org/10.1016/0021-9991(77)90070-5.
- N.A. Kudryashov, On “New Travelling Wave Solutions” of the KdV and the KdV–Burgers Equations, Commun. Nonlinear Sci. Numer. Simul. 14 (2009), 1891–1900. https://doi.org/10.1016/j.cnsns.2008.09.020.
- L. Wazzan, A Modified Tanh–Coth Method for Solving the KdV and the KdV–Burgers’ Equations, Commun. Nonlinear Sci. Numer. Simul. 14 (2009), 443–450. https://doi.org/10.1016/j.cnsns.2007.06.011.
- Y. Shi, B. Xu, Y. Guo, Numerical Solution of Korteweg-de Vries-Burgers Equation by the Compact-Type CIP Method, Adv. Diff. Equ. 2015 (2015), 353. https://doi.org/10.1186/s13662-015-0682-5.
- A. Aydin, An Unconventional Splitting for Korteweg de Vries-Burgers Equation, Eur. J. Pure Appl. Math. 8 (2015), 50-63.
- S.A. Kashchenko, Normal Form for the KdV–Burgers Equation, Dokl. Math. 93 (2016), 331–333. https://doi.org/10.1134/S1064562416030170.
- C. Koroglu, Exact and Nonstandard Finite Difference Schemes for the Generalized KdV–Burgers Equation, Adv. Diff. Equ. 2020 (2020), 134. https://doi.org/10.1186/s13662-020-02584-2.
- H. Ahmad, A.R. Seadawy, T.A. Khan, Numerical Solution of Korteweg–de Vries-Burgers Equation by the Modified Variational Iteration Algorithm-II Arising in Shallow Water Waves, Phys. Scripta 95 (2020), 045210. https://doi.org/10.1088/1402-4896/ab6070.
- K. Koroche, H. Chemeda, Sixth-Order Compact Finite Difference Method for Solving KDV-Burger Equation in the Application of Wave Propagations, Iran. J. Numer. Anal. Optim. 12 (2022), 277-300. https://doi.org/10.22067/ijnao.2021.72366.1058.
- N. Parumasur, R.A. Adetona, P. Singh, Efficient Solution of Burgers’, Modified Burgers’ and KdV–Burgers’ Equations Using B-Spline Approximation Functions, Mathematics 11 (2023), 1847. https://doi.org/10.3390/math11081847.
- J.-H. He, Some Asymptotic Methods for Strongly Nonlinear Equations, Int. J. Mod. Phys. B 20 (2006), 1141–1199. https://doi.org/10.1142/S0217979206033796.
- J.-H. He, Variational Iteration Method – a Kind of Non-Linear Analytical Technique: Some Examples, Int. J. Non-Linear Mech. 34 (1999), 699–708. https://doi.org/10.1016/S0020-7462(98)00048-1.
- M. Inokuti, H. Sekine, T. Mura, General Use of the Lagrange Multiplier in Nonlinear Mathematical Physics, in: Variational Methods in the Mechanics of Solids, Elsevier, 1980: pp. 156–162. https://doi.org/10.1016/B978-0-08-024728-1.50027-6.
- J.-H. He, Homotopy Perturbation Technique, Comput. Methods Appl. Mech. Eng. 178 (1999), 257–262. https://doi.org/10.1016/S0045-7825(99)00018-3.
- H. Ahmad, A.R. Seadawy, T.A. Khan, Numerical Solution of Korteweg–de Vries-Burgers Equation by the Modified Variational Iteration Algorithm-II Arising in Shallow Water Waves, Phys. Scripta 95 (2020), 045210. https://doi.org/10.1088/1402-4896/ab6070.
- A.A. Soliman, A Numerical Simulation and Explicit Solutions of KdV-Burgers’ and Lax’s Seventh-Order KdV Equations, Chaos Solitons Fractals 29 (2006), 294–302. https://doi.org/10.1016/j.chaos.2005.08.054.
- A.H. Khater, R.S. Temsah, M.M. Hassan, A Chebyshev Spectral Collocation Method for Solving Burgers’-Type Equations, J. Comput. Appl. Math. 222 (2008), 333–350. https://doi.org/10.1016/j.cam.2007.11.007.