Almost Nearly (τ1, τ2)-Continuous Functions
Main Article Content
Abstract
This paper presents a new class of functions called almost nearly (τ1, τ2)-continuous functions. Furthermore, several characterizations and some properties concerning almost nearly (τ1, τ2)-continuous functions are discussed.
Article Details
References
- C. Boonpok, J. Khampakdee, Almost Strong θ(Λ, p)-Continuity for Functions, Eur. J. Pure Appl. Math. 17 (2024), 300–309. https://doi.org/10.29020/nybg.ejpam.v17i1.4975.
- C. Boonpok, P. Pue-On, Characterizations of Almost (τ1, τ2)-Continuous Functions, Int. J. Anal. Appl. 22 (2024), 33. https://doi.org/10.28924/2291-8639-22-2024-33.
- C. Boonpok, C. Klanarong, On Weakly (τ1, τ2)-Continuous Functions, Eur. J. Pure Appl. Math. 17 (2024), 416–425. https://doi.org/10.29020/nybg.ejpam.v17i1.4976.
- C. Boonpok, N. Srisarakham, (τ1, τ2)-Continuity for Functions, Asia Pac. J. Math. 11 (2024), 21. https://doi.org/10.28924/APJM/11-21.
- C. Boonpok, N. Srisarakham, Weak Forms of (Λ, b)-Open Sets and Weak (Λ, b)-Continuity, Eur. J. Pure Appl. Math. 16 (2023), 29–43. https://doi.org/10.29020/nybg.ejpam.v16i1.4571.
- C. Boonpok, θ(?)-Precontinuity, Mathematica, 65 (2023), 31–42. https://doi.org/10.24193/mathcluj.2023.1.04.
- C. Boonpok, on Some Spaces via Topological Ideals, Open Math. 21 (2023), 20230118. https://doi.org/10.1515/math-2023-0118.
- C. Boonpok, J. Khampakdee, (Λ,sp)-Open Sets in Topological Spaces, Eur. J. Pure Appl. Math. 15 (2022), 572–588. https://doi.org/10.29020/nybg.ejpam.v15i2.4276.
- C. Boonpok, on Characterizations of ?-Hyperconnected Ideal Topological Spaces, J. Math. 2020 (2020), 9387601. https://doi.org/10.1155/2020/9387601.
- C. Boonpok, (τ1, τ2)δ-Semicontinuous Multifunctions, Heliyon, 6 (2020), e05367. https://doi.org/10.1016/j.heliyon.2020.e05367.
- C. Boonpok, C. Viriyapong, M. Thongmoon, on Upper and Lower (τ1, τ2)-Precontinuous Multifunctions, J. Math. Computer Sci. 18 (2018), 282–293. https://doi.org/10.22436/jmcs.018.03.04.
- C. Boonpok, Almost (G, m)-Continuous Functions, Int. J. Math. Anal. 4 (2010), 1957–1964.
- C. Boonpok, M-Continuous Functions in Biminimal Structure Spaces, Far East J. Math. Sci. 43 (2010), 41–58.
- M. Chiangpradit, S. Sompong, C. Boonpok, Weakly Quasi (τ1, τ2)-Continuous Functions, Int. J. Anal. Appl. 22 (2024), 125. https://doi.org/10.28924/2291-8639-22-2024-125.
- N. Chutiman, A. Sama-Ae, C. Boonpok, Almost Nearly (τ1, τ2)-Continuity for Multifunctions, (Accepted).
- T. Duangphui, C. Boonpok and C. Viriyapong, Continuous Functions on Bigeneralized Topological Spaces, Int. J. Math. Anal. 5 (2011), 1165–1174.
- W. Dungthaisong, C. Boonpok, C. Viriyapong, Generalized Closed Sets in Bigeneralized Topological Spaces, Int. J. Math. Anal. 5 (2011), 1175–1184.
- B. Kong-ied, S. Sompong, C. Boonpok, Almost Quasi (τ1, τ2)-Continuous Functions, Asia Pac. J. Math. 11 (2024), 64. https://doi.org/10.28924/APJM/11-64.
- S.N. Maheshwari, G.I. Chae, P.C. Jain, Almost Feebly Continuous Functions, Ulsan Inst. Tech. Rep. 13 (1982), 195–197.
- S.R. Malghan, V.V. Hanchinamani, N-Continuous Functions, Ann. Soc. Sci. Bruxelles, 98 (1984), 69–79.
- S. Marcus, Sur les Fonctions Quasicontinues au Sens de S. Kempisty, Colloq. Math. 8 (1961), 47–53. https://eudml.org/doc/210887.
- B.M. Munshi, D.S. Bassan, Almost Semi-Continuous Mappings, Math. Student, 49 (1981), 239–248.
- T. Noiri, N. Ergun, Notes on N-Continuous Functions, Res. Rep. Yatsushiro Coll. Tech. 11 (1989), 65–68.
- V. Popa, on a Decomposition of Quasicontinuity in Topological Spaces, Stud. Cerc. Mat. 30 (1978), 31–35.
- P. Pue-on, A. Sama-Ae, C. Boonpok, Upper and Lower Faint (τ1, τ2)-Continuity, Int. J. Anal. Appl. 22 (2024), 169. https://doi.org/10.28924/2291-8639-22-2024-169.
- P. Pue-on, C. Boonpok, θ(Λ, p)-Continuity for Functions, Int. J. Math. Comput. Sci. 19 (2024), 491–495.
- P. Pue-on, S. Sompong, C. Boonpok, Almost Quasi (τ1, τ2)-Continuity for Multifunctions, Int. J. Anal. Appl. 22 (2024), 97. https://doi.org/10.28924/2291-8639-22-2024-97.
- M.K. Singal, A.R. Singal, Almost Continuous Mappings, Yokohama J. Math. 16 (1968), 63–73.
- N. Srisarakham, C. Boonpok, Almost (Λ, p)-Continuous Functions, Int. J. Math. Comput. Sci. 18 (2023), 255–259.
- M. Thongmoon, A. Sama-Ae, C. Boonpok, Upper and Lower Near (τ1, τ2)-Continuity, (Accepted).
- M. Thongmoon, C. Boonpok, Strongly θ(Λ, p)-Continuous Functions, Int. J. Math. Comput. Sci. 19 (2024), 475–479.
- N. Viriyapong, S. Sompong, C. Boonpok, Slightly (τ1, τ2)p-Continuous Multifunctions, Int. J. Anal. Appl. 22 (2024), 152. https://doi.org/10.28924/2291-8639-22-2024-152.
- C. Viriyapong, S. Sompong, C. Boonpok, Upper and Lower Slight α(τ1, τ2)-Continuity, Eur. J. Pure Appl. Math. 17 (2024), 2142–2154. https://doi.org/10.29020/nybg.ejpam.v17i3.5321.
- N. Viriyapong, S. Sompong, C. Boonpok, (τ1, τ2)-Extremal Disconnectedness in Bitopological Spaces, Int. J. Math. Comput. Sci. 19 (2024), 855–860.
- C. Viriyapong, C. Boonpok, (Λ,sp)-Continuous Functions, WSEAS Trans. Math. 21 (2022), 380–385. https://doi.org/10.37394/23206.2022.21.45.
- C. Viriyapong, C. Boonpok, (τ1, τ2)α-Continuity for Multifunctions, J. Math. 2020 (2020), 6285763. https://doi.org/10.1155/2020/6285763.