The Coeffisients of the Spline Minimizing Semi Norm in K2(P3)
Main Article Content
Abstract
Our goal is to construct an approximation of the unknown function f by Sobolev’s method, we construct an approximation form of unknown function by interpolation splines minimizing the semi norm in K2(P3) Hilbert space. Explicit formulas for coefficients of the interpolation splines are obtained. The resulting interpolation spline is exact for the hyperbolic functions and constant. In the last section, we obtain several absolute errors graph in interpolating functions with the sixth order algebraic-hyperbolic spline, and we compare absolute errors of cubic spline and algebraic-hyperbolic in interpolating several functions. Numerical results show that the sixth-order spline interpolates the functions with higher accuracy than the cubic spline.
Article Details
References
- Y.S. Zavyalov, B.I. Kvasov, V.L. Miroshnichenko, Methods of Spline Functions, Nauka, (1980).
- B.I. Kvasov, Difference Methods for Constructing Isogeometric Splines, Publishing House of NSU, (2004).
- V.I. Paasonen, Parallel Algorithm for Construction of Hyperbolic Splines, Comput. Technol. 11 (2006), 88–97. https://www.researchgate.net/publication/266942570.
- E.R. Brown, J.G. Ibrahim, V. DeGruttola, A Flexible B-Spline Model for Multiple Longitudinal Biomarkers and Survival, Biometrics 61 (2005), 64–73. https://doi.org/10.1111/j.0006-341X.2005.030929.x.
- D.F. McAllister, J.A. Roulier, Interpolation by Convex Quadratic Splines, Math. Comput. 32 (1978), 1154–1162. https://doi.org/10.1090/S0025-5718-1978-0481734-6.
- L.I. Schumaker, On Shape Preserving Quadratic Spline Interpolation, SIAM J. Numer. Anal. 20 (1983), 854–864. https://doi.org/10.1137/0720057.
- F.N. Fritsch, R.E. Carlson, Monotone Piecewise Cubic Interpolation, SIAM J. Numer. Anal. 17 (1980), 238–246. https://doi.org/10.1137/0717021.
- P. Costantini, On Monotone and Convex Spline Interpolation, Math. Comput. 46 (1986), 203–214. https://doi.org/10.1090/S0025-5718-1986-0815841-7.
- R. Delbourgo, J.A. Gregory, Rational Quadratic Spline Interpolation to Monotonic Data, IMA J. Numer. Anal. 2 (1982), 1-18. http://bura.brunel.ac.uk/handle/2438/2285.
- J. Li, C.Liu. A Class of Polynomial Spline Curve with Free Parameters that Naturally Interpolates the Data Points, IAENG Int. J. Appl. Math. 50 (2020), 1–5.
- K.M. Shadimetov, A.R. Hayotov, Construction of Interpolation Splines Minimizing Semi-Norm in W (m,m−1) 2 (0, 1) Space, BIT Numer. Math. 53 (2013), 545–563. https://doi.org/10.1007/s10543-012-0407-z.
- A.R. Hayotov, G.V. Milovanovi´c, K.M. Shadimetov, Interpolation Splines Minimizing a Semi-Norm, Calcolo 51 (2014), 245–260. https://doi.org/10.1007/s10092-013-0080-x.
- A.R. Hayotov, Construction of Interpolation Splines Minimizing the Semi-Norm in the Space K2(Pm), J. Sib. Fed. Univ. Math. Phys. 11 (2018), 383–396. https://doi.org/10.17516/1997-1397-2018-11-3-383-396.
- R. Campagna, S. De Marchi, E. Perracchione, G. Santin, Greedy Algorithms for Learning via ExponentialPolynomial Splines, arXiv:2109.14299 [math.NA] (2021). https://doi.org/10.48550/ARXIV.2109.14299.
- R. Campagna, C. Conti, Reproduction Capabilities of Penalized Hyperbolic-Polynomial Splines, Appl. Math. Lett. 132 (2022), 108133. https://doi.org/10.1016/j.aml.2022.108133.
- S. Eddargani, M. Oraiche, A. Lamnii, M. Louzar, C 2 Cubic Algebraic Hyperbolic Spline Interpolating Scheme by Means of Integral Values, Mathematics 10 (2022), 1490. https://doi.org/10.3390/math10091490.
- S. Cuomo, C. Conti, R. Campagna, Smoothing Exponential-Polynomial Splines for Multiexponential Decay Data, Dolomites Res. Notes Approx. 12 (2019), 86–100. https://doi.org/10.14658/pupj-drna-2019-1-9.
- K. Shadimetov, F. Nuraliev, S. Kuziev, Coefficients and Errors of the Optimal Quadrature Formula of the Hermite Type, AIP Conf. Proc. 3147 (2024), 030030. https://doi.org/10.1063/5.0210357.
- G.N. Akhmadaliyev, Constructing a Hyperbolic Spline, Bull. Inst. Math. 4 (2021), 25–36.
- J.H. Ahlberg, E.N. Nilson, J.L. Walsh, The Theory of Splines and Their Applications, Academic Press, 1967.
- S.L. Sobolev, The Coefficients of Optimal Quadrature Formulas, in: G.V. Demidenko, V.L. Vaskevich (Eds.), Selected Works of S.L. Sobolev, Springer, Boston, MA, 2006: pp. 561–565. https://doi.org/10.1007/978-0-387-34149-1_35.
- S.L. Sobolev, V.L. Vaskevich, The Theory of Cubature Formulas, Springer, Dordrecht, 1997. https://doi.org/10.1007/978-94-015-8913-0.
- S.L. Sobolev, Theory of Cubature Formulas, in: G.V. Demidenko, V.L. Vaskevich (Eds.), Selected Works of S.L. Sobolev, Springer, Boston, MA, 2006: pp. 491–511. https://doi.org/10.1007/978-0-387-34149-1_26.
- G.N. Ahmadaliyev, A.R. Hayotov, A Discrete Analogue of the Differential Operator $frac{d^{2m} }{dx^{2m} } -2omega ^{2} frac{d^{2m-2} }{dx^{2m-2} } +omega ^{4} frac{d^{2m-4} }{dx^{2m-4}}$, Uzbek Math. J. 2017 (2017), 10–22.
- Kh.M. Shadimetov, A.R. Hayotov, Properties of Discrete Analogue of the Differential Operator $frac{d^{2m}}{dx^{2m}}-frac{d^{2m-2}}{dx^{2m-2}}$, arXiv:0810.5423 [math.NA] (2008). https://doi.org/10.48550/ARXIV.0810.5423.
- K. Shadimetov, F. Nuraliev, S. Kuziev, Optimal Quadrature Formula of Hermite Type in the Space of Differentiable Functions, Int. J. Anal. Appl. 22 (2024), 25. https://doi.org/10.28924/2291-8639-22-2024-25.
- F.A. Nuraliev, Sh.S. Kuziev, The Coefficients of an Optimal Quadrature Formula in the Space of Differentiable Functions, Uzbek Math. J. 67 (2023), 124–134.