Mathematical Modeling and Numerical Simulation of Drug Consumption Dynamics in Burkina Faso
Main Article Content
Abstract
In this paper a mathematical model of drug consumption dynamics is proposed and analyzed. The model is based on the principle of the epidemiological model and takes into account the biological and environmental factors of exposed individuals, treatment and sensitization. The Jacobian determinant method is used to determine the basic reproduction function R0 of the model. The drug-free equilibrium points and the endemic equilibrium of the model were then identified, and their stabilities were analyzed based on the value of R0. A sensitivity analysis was performed to assess which parameters have the greatest influence on the dynamics of drug consumption. The numerical simulation was carried out using data from the Burkinabe population in 2020, aged between 11 and 65 years. The numerical results show that sensitization and treatment do not have much effect if the individual evolves in a favorable environment.
Article Details
References
- O. Gansaore, Profil Épidémiologique et Clinique des Patients Admis dans l’Unité d’Addictologie du Centre Hospitalier Universitaire Yalgado Ouédraogo du 01 Octobre 2018 au 31 Décembre 2020, Thesis, Université Joseph Ki-Zerbo, Ouagadougou, 2021.
- M. Traoré, Étude du Profil et de la Prise en Charge des Cas d’Abus de Drogues dans la Ville de Bobo-Dioulasso (Burkina Faso), Thesis, Université Joseph Ki-Zerbo, Ouagadougou, 2012.
- F. Somé, Évaluation Quantitative et Qualitative de l’Usage des Drogues en Milieu Étudiant à l’Université de Ouagadougou, Thesis, Université Joseph Ki-Zerbo, Ouagadoudou, 1991.
- E. White, C. Comiskey, Heroin Epidemics, Treatment and ODE Modelling, Math. Biosci. 208 (2007), 312–324. https://doi.org/10.1016/j.mbs.2006.10.008.
- G. Mulone, B. Straughan, A Note on Heroin Epidemics, Math. Biosci. 218 (2009), 138–141. https://doi.org/10.1016/j.mbs.2009.01.006.
- E. Sánchez, R.-J. Villanueva, F.-J. Santonja, M. Rubio, Predicting Cocaine Consumption in Spain: A Mathematical Modelling Approach, Drugs Educ. Prev. Policy 18 (2011), 108–115. https://doi.org/10.3109/09687630903443299.
- I.M. Wangari, L. Stone, Analysis of a Heroin Epidemic Model with Saturated Treatment Function, J. Appl. Math. 2017 (2017), 1953036. https://doi.org/10.1155/2017/1953036.
- M. Chapwanya, J.M.S. Lubuma, H. Lutermann, A. Matusse, F. Nyabadza, Y. Terefe, A Mathematical Model for the Cannabis Epidemic in a South African Province with a Non-Linear Incidence Rate, J. Stat. Manag. Syst. 24 (2021), 1627–1647. https://doi.org/10.1080/09720510.2020.1843274.
- D. Kada, A. Kouidere, O. Balatif, M. Rachik, Mathematical Modeling of the Gaming Disorder Model with Media Coverage: Optimal Control Approach, Math. Model. Comput. 10 (2023), 245–260. https://doi.org/10.23939/mmc2023.01.245.
- I.M. Elbaz, M.M. El-Awady, Modeling the Soft Drug Epidemic: Extinction, Persistence and Sensitivity Analysis, Results Control Optim. 10 (2023), 100193. https://doi.org/10.1016/j.rico.2022.100193.
- S. Saha, G. Samanta, Synthetic Drugs Transmission: Stability Analysis and Optimal Control, Letters in Biomathematics 6 (2019), 1-31. https://doi.org/10.30707/LiB6.2Saha.
- F. Aqel, H. Alaa, N.E. Alaa, Mathematical Model of Covid-19 Transmissibility During the Vaccination Period, Eurasian J. Math. Comput. Appl. 11 (2023), 4–28.
- B. Seidu, O.D. Makinde, J.K.K. Asamoah, Threshold Quantities and Lyapunov Functions for Ordinary Differential Equations Epidemic Models with Mass Action and Standard Incidence Functions, Chaos Solitons Fractals 170 (2023), 113403. https://doi.org/10.1016/j.chaos.2023.113403.
- H. Tinde, A. Kiemtore, W.O. Sawadogo, P.O.F. Ouedraogo, I. Zangré, Estimation of Epidemiological Parameters for COVID-19 Cases in Burkina Faso Using African Vulture Optimization Algorithm (AVOA), Int. J. Anal. Appl. 22 (2024), 203. https://doi.org/10.28924/2291-8639-22-2024-203.
- O. Koutou, A.B. Diabaté, B. Sangaré, Mathematical Analysis of the Impact of the Media Coverage in Mitigating the Outbreak of COVID-19, Math. Comput. Simul. 205 (2023), 600–618. https://doi.org/10.1016/j.matcom.2022.10.017.
- A. Kiemtore, W.O. Sawadogo, I. Zangré, P.O.F. Ouedraogo, I. Mouaouia, Estimation of Parameters for the Mathematical Model of the Spread of Hepatitis B in Burkina Faso Using Grey Wolf Optimizer, Int. J. Anal. Appl. 22 (2024), 48. https://doi.org/10.28924/2291-8639-22-2024-48.
- C. Bounkaicha, K. Allali, Y. Tabit, J. Danane, Global Dynamic of Spatio-Temporal Fractional Order SEIR Model, Math. Model. Comput. 10 (2023), 299–310. https://doi.org/10.23939/mmc2023.02.299.
- J.K.K. Asamoah, Z. Jin, G.-Q. Sun, Non-Seasonal and Seasonal Relapse Model for Q Fever Disease with Comprehensive Cost-Effectiveness Analysis, Results Phys. 22 (2021), 103889. https://doi.org/10.1016/j.rinp.2021.103889.
- J. Norton, An Introduction to Sensitivity Assessment of Simulation Models, Environ. Model. Softw. 69 (2015), 166–174. https://doi.org/10.1016/j.envsoft.2015.03.020.