Results on Common Fixed Points in Strong-Composed-Cone Metric Spaces

Main Article Content

Anas A. Hijab, Laith K. Shaakir, Sarah Aljohani, Nabil Mlaiki

Abstract

The current study aims to propose several generalizations of a strong b-metric space which is called Strong-composed cone metric spaces. Therefore, to illustrate the concept of these generalizations, the study provides examples of Strong-composed cone metric space, which are neither a Strong-controlled metric type space nor Strong b-metric space, also redefined with cone metric spaces. Finally, the study demonstrates the uniqueness of some fixed-point results involving some general structures of nonlinear rational contractions with applications.

Article Details

References

  1. I.A. Bakhtin, The Contraction Mapping Principle in Almost Metric Spaces, Funct. Anal., Gos. Ped. Inst. Unianowsk 30 (1989), 26–37.
  2. Z.D. Mitrovi´c, S. Radenovi´c, The Banach and Reich Contractions in bv(s)-Metric Spaces, J. Fixed Point Theory Appl. 19 (2017), 3087–3095. https://doi.org/10.1007/s11784-017-0469-2.
  3. Z. Mitrovic, H. I¸sık, S. Radenovic, The New Results in Extended b-Metric Spaces and Applications, Int. J. Nonlinear Anal. Appl. 11 (2020), 473-482. https://doi.org/10.22075/ijnaa.2019.18239.1998.
  4. W. Kirk, N. Shahzad, Fixed Point Theory in Distance Spaces, Springer, Cham, 2014.
  5. B. Alqahtani, E. Karapinar, F. Khojasteh, On Some Fixed Point Results in Extended Strong b-Metric Spaces, Bull. Math. Anal. Appl. 10 (2018), 25–35.
  6. D. Santina, W.A. Mior Othman, K.B. Wong, N. Mlaiki, New Generalization of Metric-Type Spaces—Strong Controlled, Symmetry 15 (2023), 416. https://doi.org/10.3390/sym15020416.
  7. A.A. Hijab, L.K. Shaakir, New Generalization of Strong-Composed Metric Type Spaces with Special (ψ, φ)- Contraction, Adv. Fixed Point Theory, 15 (2025), 5. https://doi.org/10.28919/afpt/9016.
  8. N. Mlaiki, H. Aydi, N. Souayah, T. Abdeljawad, Controlled Metric Type Spaces and the Related Contraction Principle, Mathematics 6 (2018), 194. https://doi.org/10.3390/math6100194.
  9. T. Abdeljawad, N. Mlaiki, H. Aydi, N. Souayah, Double Controlled Metric Type Spaces and Some Fixed Point Results, Mathematics 6 (2018), 320. https://doi.org/10.3390/math6120320.
  10. D. Lateef, Fisher Type Fixed Point Results in Controlled Metric Spaces, J. Math. Comput. Sci. 20 (2020), 234–240. https://doi.org/10.22436/jmcs.020.03.06.
  11. A. Karami, S. Sedghi, Z.D. Mitrovi´c, Solving Existence Problems via Contractions in Expanded b-Metric Spaces, J. Anal. 30 (2022), 895–907. https://doi.org/10.1007/s41478-021-00376-9.
  12. I. Ayoob, N.Z. Chuan, N. Mlaiki, Double-Composed Metric Spaces, Mathematics 11 (2023), 1866. https://doi.org/10.3390/math11081866.
  13. C.J. Kil, C.S. Yu, U.C. Han, Fixed Point Results for Some Rational Type Contractions in Double-Composed Metric Spaces and Applications, Informatica 34 (2023), 105–130.
  14. H. Doan, Faculty of Basic Sciences, Quang Ninh University of Industry, Yen Tho, Dong Trieu, Quang Ninh, Viet Nam, A New Type of Kannan’s Fixed Point Theorem in Strong b- Metric Spaces, AIMS Math. 6 (2021), 7895–7908. https://doi.org/10.3934/math.2021458.
  15. A. Šostak, T. Öner, ˙I.C. Duman, On Topological and Metric Properties of ⊕ − sb-Metric Spaces, Mathematics 11 (2023), 4090. https://doi.org/10.3390/math11194090.
  16. L.-G. Huang, X. Zhang, Cone Metric Spaces and Fixed Point Theorems of Contractive Mappings, J. Math. Anal. Appl. 332 (2007), 1468–1476. https://doi.org/10.1016/j.jmaa.2005.03.087.
  17. N. Hussain, M.H. Shah, KKM Mappings in Cone b-Metric Spaces, Comput. Math. Appl. 62 (2011), 1677–1684. https://doi.org/10.1016/j.camwa.2011.06.004.
  18. T.L. Shateri, Double Controlled Cone Metric Spaces and the Related Fixed Point Theorems, arXiv:2208.06812 [math.FA] (2022). https://doi.org/10.48550/arXiv.2208.06812.
  19. A.A. Hijab, L.K. Shaakir, S. Aljohani, N. Mlaiki, Fredholm Integral Equation in Composed-Cone Metric Spaces, Bound. Value Probl. 2024 (2024), 64. https://doi.org/10.1186/s13661-024-01876-w.
  20. A.A. Hijab, L.K. Shaakir, S. Aljohani, N. Mlaiki, Double Composed Metric-like Spaces via Some Fixed Point Theorems, AIMS Math. 9 (2024), 27205–27219. https://doi.org/10.3934/math.20241322.
  21. A.N. Branga, I.M. Olaru, Cone Metric Spaces over Topological Modules and Fixed Point Theorems for Lipschitz Mappings, Mathematics 8 (2020), 724. https://doi.org/10.3390/math8050724.
  22. W. Shatanawi, Z. D. Mitrovi´c, N. Hussain, S. Radenovi´c, On Generalized Hardy–Rogers Type α-Admissible Mappings in Cone b-Metric Spaces over Banach Algebras, Symmetry 12 (2020), 81. https://doi.org/10.3390/sym12010081.
  23. M. Nazam, A. Arif, H. Mahmood, C. Park, Some Results in Cone Metric Spaces with Applications in Homotopy Theory, Open Math. 18 (2020), 295–306. https://doi.org/10.1515/math-2020-0025.
  24. Q. Meng, On Generalized Algebraic Cone Metric Spaces and Fixed Point Theorems, Chin. Ann. Math., Ser. B 40 (2019), 429–438. https://doi.org/10.1007/s11401-019-0142-8.
  25. S.M. Ali Abou Bakr, Coupled Fixed Point Theorems for Some Type of Contraction Mappings in b-Cone and b-Theta Cone Metric Spaces, J. Math. 2021 (2021), 5569674. https://doi.org/10.1155/2021/5569674.
  26. S.M. Ali Abou Bakr, Theta Cone Metric Spaces and Some Fixed Point Theorems, J. Math. 2020 (2020), 8895568. https://doi.org/10.1155/2020/8895568.
  27. B.K. Dass, S. Gupta, An Extension of Banach Contraction Principle Through Rational Expression, Indian J. Pure Appl. Math. 6 (1975), 1455–1458.
  28. D.S. Jaggi, Some Unique Fixed Point Theorems, Indian J. Pure Appl. Math. 8 (1977), 223–230.
  29. K. Ahmad, G. Murtaza, S. Alshaikey, U. Ishtiaq, I.K. Argyros, Common Fixed Point Results on a Double-Controlled Metric Space for Generalized Rational-Type Contractions with Application, Axioms 12 (2023), 941. https://doi.org/10.3390/axioms12100941.
  30. Z. Kadelburg, S. Radenovic, A Note on Various Types of Cones and Fixed Point Results in Cone Metric Spaces, Asian J. Math. Appl. 2013 (2013), ama0104.
  31. H. Huang, S. Radenovi´c, Common Fixed Point Theorems of Generalized Lipschitz Mappings in Cone B-Metric Spaces over Banach Algebras and Applications, J. Nonlinear Sci. Appl. 08 (2015), 787–799. https://doi.org/10.22436/jnsa.008.05.29.
  32. J. Matkowski, Fixed Point Theorems for Mappings With a Contractive Iterate at a Point, Proc. Amer. Math. Soc. 62 (1977), 344–348.
  33. T. Som, L. Kumar, Common Fixed Point Results in Cone Metric Spaces Using Altering Distance Function, Amer. J. Math. Stat. 2 (2012), 217–220. https://doi.org/10.5923/j.ajms.20120206.09.