Results on Common Fixed Points in Strong-Composed-Cone Metric Spaces
Main Article Content
Abstract
The current study aims to propose several generalizations of a strong b-metric space which is called Strong-composed cone metric spaces. Therefore, to illustrate the concept of these generalizations, the study provides examples of Strong-composed cone metric space, which are neither a Strong-controlled metric type space nor Strong b-metric space, also redefined with cone metric spaces. Finally, the study demonstrates the uniqueness of some fixed-point results involving some general structures of nonlinear rational contractions with applications.
Article Details
References
- I.A. Bakhtin, The Contraction Mapping Principle in Almost Metric Spaces, Funct. Anal., Gos. Ped. Inst. Unianowsk 30 (1989), 26–37.
- Z.D. Mitrovi´c, S. Radenovi´c, The Banach and Reich Contractions in bv(s)-Metric Spaces, J. Fixed Point Theory Appl. 19 (2017), 3087–3095. https://doi.org/10.1007/s11784-017-0469-2.
- Z. Mitrovic, H. I¸sık, S. Radenovic, The New Results in Extended b-Metric Spaces and Applications, Int. J. Nonlinear Anal. Appl. 11 (2020), 473-482. https://doi.org/10.22075/ijnaa.2019.18239.1998.
- W. Kirk, N. Shahzad, Fixed Point Theory in Distance Spaces, Springer, Cham, 2014.
- B. Alqahtani, E. Karapinar, F. Khojasteh, On Some Fixed Point Results in Extended Strong b-Metric Spaces, Bull. Math. Anal. Appl. 10 (2018), 25–35.
- D. Santina, W.A. Mior Othman, K.B. Wong, N. Mlaiki, New Generalization of Metric-Type Spaces—Strong Controlled, Symmetry 15 (2023), 416. https://doi.org/10.3390/sym15020416.
- A.A. Hijab, L.K. Shaakir, New Generalization of Strong-Composed Metric Type Spaces with Special (ψ, φ)- Contraction, Adv. Fixed Point Theory, 15 (2025), 5. https://doi.org/10.28919/afpt/9016.
- N. Mlaiki, H. Aydi, N. Souayah, T. Abdeljawad, Controlled Metric Type Spaces and the Related Contraction Principle, Mathematics 6 (2018), 194. https://doi.org/10.3390/math6100194.
- T. Abdeljawad, N. Mlaiki, H. Aydi, N. Souayah, Double Controlled Metric Type Spaces and Some Fixed Point Results, Mathematics 6 (2018), 320. https://doi.org/10.3390/math6120320.
- D. Lateef, Fisher Type Fixed Point Results in Controlled Metric Spaces, J. Math. Comput. Sci. 20 (2020), 234–240. https://doi.org/10.22436/jmcs.020.03.06.
- A. Karami, S. Sedghi, Z.D. Mitrovi´c, Solving Existence Problems via Contractions in Expanded b-Metric Spaces, J. Anal. 30 (2022), 895–907. https://doi.org/10.1007/s41478-021-00376-9.
- I. Ayoob, N.Z. Chuan, N. Mlaiki, Double-Composed Metric Spaces, Mathematics 11 (2023), 1866. https://doi.org/10.3390/math11081866.
- C.J. Kil, C.S. Yu, U.C. Han, Fixed Point Results for Some Rational Type Contractions in Double-Composed Metric Spaces and Applications, Informatica 34 (2023), 105–130.
- H. Doan, Faculty of Basic Sciences, Quang Ninh University of Industry, Yen Tho, Dong Trieu, Quang Ninh, Viet Nam, A New Type of Kannan’s Fixed Point Theorem in Strong b- Metric Spaces, AIMS Math. 6 (2021), 7895–7908. https://doi.org/10.3934/math.2021458.
- A. Šostak, T. Öner, ˙I.C. Duman, On Topological and Metric Properties of ⊕ − sb-Metric Spaces, Mathematics 11 (2023), 4090. https://doi.org/10.3390/math11194090.
- L.-G. Huang, X. Zhang, Cone Metric Spaces and Fixed Point Theorems of Contractive Mappings, J. Math. Anal. Appl. 332 (2007), 1468–1476. https://doi.org/10.1016/j.jmaa.2005.03.087.
- N. Hussain, M.H. Shah, KKM Mappings in Cone b-Metric Spaces, Comput. Math. Appl. 62 (2011), 1677–1684. https://doi.org/10.1016/j.camwa.2011.06.004.
- T.L. Shateri, Double Controlled Cone Metric Spaces and the Related Fixed Point Theorems, arXiv:2208.06812 [math.FA] (2022). https://doi.org/10.48550/arXiv.2208.06812.
- A.A. Hijab, L.K. Shaakir, S. Aljohani, N. Mlaiki, Fredholm Integral Equation in Composed-Cone Metric Spaces, Bound. Value Probl. 2024 (2024), 64. https://doi.org/10.1186/s13661-024-01876-w.
- A.A. Hijab, L.K. Shaakir, S. Aljohani, N. Mlaiki, Double Composed Metric-like Spaces via Some Fixed Point Theorems, AIMS Math. 9 (2024), 27205–27219. https://doi.org/10.3934/math.20241322.
- A.N. Branga, I.M. Olaru, Cone Metric Spaces over Topological Modules and Fixed Point Theorems for Lipschitz Mappings, Mathematics 8 (2020), 724. https://doi.org/10.3390/math8050724.
- W. Shatanawi, Z. D. Mitrovi´c, N. Hussain, S. Radenovi´c, On Generalized Hardy–Rogers Type α-Admissible Mappings in Cone b-Metric Spaces over Banach Algebras, Symmetry 12 (2020), 81. https://doi.org/10.3390/sym12010081.
- M. Nazam, A. Arif, H. Mahmood, C. Park, Some Results in Cone Metric Spaces with Applications in Homotopy Theory, Open Math. 18 (2020), 295–306. https://doi.org/10.1515/math-2020-0025.
- Q. Meng, On Generalized Algebraic Cone Metric Spaces and Fixed Point Theorems, Chin. Ann. Math., Ser. B 40 (2019), 429–438. https://doi.org/10.1007/s11401-019-0142-8.
- S.M. Ali Abou Bakr, Coupled Fixed Point Theorems for Some Type of Contraction Mappings in b-Cone and b-Theta Cone Metric Spaces, J. Math. 2021 (2021), 5569674. https://doi.org/10.1155/2021/5569674.
- S.M. Ali Abou Bakr, Theta Cone Metric Spaces and Some Fixed Point Theorems, J. Math. 2020 (2020), 8895568. https://doi.org/10.1155/2020/8895568.
- B.K. Dass, S. Gupta, An Extension of Banach Contraction Principle Through Rational Expression, Indian J. Pure Appl. Math. 6 (1975), 1455–1458.
- D.S. Jaggi, Some Unique Fixed Point Theorems, Indian J. Pure Appl. Math. 8 (1977), 223–230.
- K. Ahmad, G. Murtaza, S. Alshaikey, U. Ishtiaq, I.K. Argyros, Common Fixed Point Results on a Double-Controlled Metric Space for Generalized Rational-Type Contractions with Application, Axioms 12 (2023), 941. https://doi.org/10.3390/axioms12100941.
- Z. Kadelburg, S. Radenovic, A Note on Various Types of Cones and Fixed Point Results in Cone Metric Spaces, Asian J. Math. Appl. 2013 (2013), ama0104.
- H. Huang, S. Radenovi´c, Common Fixed Point Theorems of Generalized Lipschitz Mappings in Cone B-Metric Spaces over Banach Algebras and Applications, J. Nonlinear Sci. Appl. 08 (2015), 787–799. https://doi.org/10.22436/jnsa.008.05.29.
- J. Matkowski, Fixed Point Theorems for Mappings With a Contractive Iterate at a Point, Proc. Amer. Math. Soc. 62 (1977), 344–348.
- T. Som, L. Kumar, Common Fixed Point Results in Cone Metric Spaces Using Altering Distance Function, Amer. J. Math. Stat. 2 (2012), 217–220. https://doi.org/10.5923/j.ajms.20120206.09.