Optimized Three-Stage EPQ Model Incorporating Time-Dependent Deterioration and Trapezoidal Demand Dynamics
Main Article Content
Abstract
In the world of economic evolution, world economics depends on the manufacturing industries for their source of income. Besides this, all manufacturing industries aim to achieve maximum profit with minimum cost. An optimal three-stage economic production quantity model with time-dependent deterioration and trapezoidal and triangular demands is described in this paper. Shortages are not allowed; all cost values depend on time, and demand depends on trapezoidal and triangular demand. However, trapezoidal demand is described mainly in this paper. Practically, many products like automobiles, electronic devices, vegetables, biomedicines, fruits, fancy products, dairy products, etc. exhibit trapezoidal demand. A direct inverse relationship between the trapezoidal demand and production rate describes the demand rate. This study intends to delight consumers and reduce total costs. Our conclusions are illustrated using numerical examples, extensive prediction with the help of MATLAB software R2021b, and sensitivity analysis for all parameters.
Article Details
References
- P.L. Abad, Optimal Price and Order Size for a Reseller under Partial Backordering, Comput. Oper. Res. 28 (2001), 53–65. https://doi.org/10.1016/S0305-0548(99)00086-6.
- P.L. Abad, Optimal Pricing and Lot-Sizing Under Conditions of Perishability and Partial Backordering, Manag. Sci. 42 (1996), 1093–1104. https://doi.org/10.1287/mnsc.42.8.1093.
- A. Kumar, P.K. Santra, G.S. Mahapatra, Fractional Order Inventory System for Time-Dependent Demand Influenced by Reliability and Memory Effect of Promotional Efforts, Comput. Ind. Eng. 179 (2023), 109191. https://doi.org/10.1016/j.cie.2023.109191.
- D. Chakraborty, D.K. Jana, T.K. Roy, Two-Warehouse Partial Backlogging Inventory Model with Ramp Type Demand Rate, Three-Parameter Weibull Distribution Deterioration under Inflation and Permissible Delay in Payments, Comput. Ind. Eng. 123 (2018), 157–179. https://doi.org/10.1016/j.cie.2018.06.022.
- M. Cheng, G. Wang, A Note on the Inventory Model for Deteriorating Items with Trapezoidal Type Demand Rate, Comput. Ind. Eng. 56 (2009), 1296–1300. https://doi.org/10.1016/j.cie.2008.07.020.
- M. Cheng, B. Zhang, G. Wang, Optimal Policy for Deteriorating Items with Trapezoidal Type Demand and Partial Backlogging, Appl. Math. Model. 35 (2011), 3552–3560. https://doi.org/10.1016/j.apm.2011.01.001.
- K.-W. Chuang, C.-N. Lin, C.-H. Lan, Order Policy Analysis for Deteriorating Inventory Model with Trapezoidal Type Demand Rate, J. Netw. 8 (2013), 1838–1844. https://doi.org/10.4304/jnw.8.8.1838-1844.
- K.-J. Chung, C.-N. Lin, Optimal Inventory Replenishment Models for Deteriorating Items Taking Account of Time Discounting, Comput. Oper. Res. 28 (2001), 67–83. https://doi.org/10.1016/S0305-0548(99)00087-8.
- P.S. Deng, R.H.-J. Lin, P. Chu, A Note on the Inventory Models for Deteriorating Items with Ramp Type Demand Rate, Eur. J. Oper. Res. 178 (2007), 112–120. https://doi.org/10.1016/j.ejor.2006.01.028.
- P.M. Ghare, G.P. Schrader, A Model for an Exponentially Decaying Inventory, J. Ind. Eng. 14 (1963), 12-50.
- H. Barman, M. Pervin, S.K. Roy, G.-W. Weber, Back-Ordered Inventory Model with Inflation in a Cloudy-Fuzzy Environment, J. Ind. Manag. Optim. 17 (2021), 1913. https://doi.org/10.3934/jimo.2020052.
- R.J. Henery, Inventory Replenishment Policy for Increasing Demand, J. Oper. Res. Soc. 30 (1979), 611–617. https://doi.org/10.1057/jors.1979.153.
- R.M. Hill, Inventory Models for Increasing Demand Followed by Level Demand, Journal of the Operational Research Society 46 (1995), 1250–1259. https://doi.org/10.1057/jors.1995.172.
- K.-C. Hung, An Inventory Model with Generalized Type Demand, Deterioration and Backorder Rates, Eur. J. Oper. Res. 208 (2011), 239–242. https://doi.org/10.1016/j.ejor.2010.08.026.
- P. Kumar, Optimal Policies for Inventory Model with Shortages, Time-Varying Holding and Ordering Costs in Trapezoidal Fuzzy Environment, Indep. J. Manag. Prod. 12 (2021), 557–574. https://doi.org/10.14807/ijmp.v12i2.1212.
- K.-P. Lin, An Extended Inventory Models with Trapezoidal Type Demands, Appl. Math. Comput. 219 (2013), 11414–11419. https://doi.org/10.1016/j.amc.2013.05.056.
- B. Mandal, A.K. Pal, Order Level Inventory System with Ramp Type Demand Rate for Deteriorating Items, J. Interdiscip. Math. 1 (1998), 49–66. https://doi.org/10.1080/09720502.1998.10700243.
- U. Mishra, An Inventory Model for Deteriorating Items under Trapezoidal Type Demand and Controllable Deterioration Rate, Prod. Eng. 9 (2015), 351–365. https://doi.org/10.1007/s11740-015-0625-8.
- V.K. Mishra, L.S. Singh, R. Kumar, An Inventory Model for Deteriorating Items with Time-Dependent Demand and Time-Varying Holding Cost under Partial Backlogging, J. Ind. Eng. Int. 9 (2013), 4. https://doi.org/10.1186/2251-712X-9-4.
- H. Mohammadi, M. Ghazanfari, M.S. Pishvaee, E. Teimoury, Fresh-Product Supply Chain Coordination and Waste Reduction Using a Revenue-and-Preservation-Technology-Investment-Sharing Contract: A Real-Life Case Study, J. Clean. Prod. 213 (2019), 262–282. https://doi.org/10.1016/j.jclepro.2018.12.120.
- R. Mondal, A.A. Shaikh, A.K. Bhunia, I.M. Hezam, R.K. Chakrabortty, Impact of Trapezoidal Demand and Deteriorating Preventing Technology in an Inventory Model in Interval Uncertainty under Backlogging Situation, Mathematics 10 (2021), 78. https://doi.org/10.3390/math10010078.
- G. Padmanabhan, P. Vrat, Inventory Model with a Mixture of Back Orders and Lost Sales, Int. J. Syst. Sci. 21 (1990), 1721–1726. https://doi.org/10.1080/00207729008910488.
- M. Pervin, S. Kumar Roy, G. Wilhelm Weber, An Integrated Inventory Model with Variable Holding Cost under Two Levels of Trade-Credit Policy, Numer. Algebra Control Optim. 8 (2018), 169–191. https://doi.org/10.3934/naco.2018010.
- M. Pervin, S.K. Roy, G. Weber, An Integrated Vendor-Buyer Model with Quadratic Demand under Inspection Policy and Preservation Technology, Hacettepe J. Math. Stat. 49 (2020), 1168–1189. https://doi.org/10.15672/hujms.476056.
- M. Pervin, S.K. Roy, P. Sannyashi, G.W. Weber, Sustainable Inventory Model with Environmental Impact for Non-Instantaneous Deteriorating Items with Composite Demand, RAIRO-Oper. Res. 57 (2023), 237–261. https://doi.org/10.1051/ro/2023005.
- M. Pervin, S. Kumar Roy, G. Wilhelm Weber, Deteriorating Inventory with Preservation Technology under Priceand Stock-Sensitive Demand, J. Ind. Manag. Optim. 16 (2020), 1585–1612. https://doi.org/10.3934/jimo.2019019.
- P. Jawla, S.R. Singh, An Economic Production Quantity Model for Imperfect Items With Exponential Demand and Variable Holding Cost Under Learning and Fuzzy Environment, Int. J. Math. Sci. 12 (2014), 720-726.
- M. Rajendra Kumar, J.K. Dash, B. Bhaula, An Exponential Economic Piece-Wise Inventory Mathematical Model for Demand-Dependent Productions with Partial Back-Ordering, J. Interdiscip. Math. 25 (2022), 659–680. https://doi.org/10.1080/09720502.2021.2012893.
- M. Resh, M. Friedman, L.C. Barbosa, On a General Solution of the Deterministic Lot Size Problem with TimeProportional Demand, Oper. Res. 24 (1976), 718–725. https://doi.org/10.1287/opre.24.4.718.
- S. Kumar Roy, M. Pervin, G. Wilhelm Weber, Imperfection with Inspection Policy and Variable Demand under Trade-Credit: A Deteriorating Inventory Model, Numer. Algebra Control Optim. 10 (2020), 45–74. https://doi.org/10.3934/naco.2019032.
- S. Kumar Roy, M. Pervin, G. Wilhelm Weber, A Two-Warehouse Probabilistic Model with Price Discount on Backorders under Two Levels of Trade-Credit Policy, J. Ind. Manag. Optim. 16 (2020), 553–578. https://doi.org/10.3934/jimo.2018167.
- T. Singh, H. Pattnayak, An EOQ Inventory Model for Deteriorating Items with Varying Trapezoidal Type Demand Rate and Weibull Distribution Deterioration, J. Inf. Optim. Sci. 34 (2013), 341–360. https://doi.org/10.1080/02522667.2013.838445.
- Vandana, H.M. Srivastava, An Inventory Model for Ameliorating/Deteriorating Items with Trapezoidal Demand and Complete Backlogging under Inflation and Time Discounting, Math. Methods Appl. Sci. 40 (2017), 2980–2993. https://doi.org/10.1002/mma.4214.
- H.-M. Wee, S.-T. Law, Economic Production Lot Size for Deteriorating Items Taking Account of the Time-Value of Money, Comput. Oper. Res. 26 (1999), 545–558. https://doi.org/10.1016/S0305-0548(98)00078-1.
- H.-M. Wee, Economic Production Lot Size Model for Deteriorating Items with Partial Back-Ordering, Comput. Ind. Eng. 24 (1993), 449–458. https://doi.org/10.1016/0360-8352(93)90040-5.
- T.M. Whitin, The Theory of Inventory Management, Princeton University Press, Princeton 1957.
- J. Wu, K. Skouri, J.-T. Teng, Y. Hu, Two Inventory Systems with Trapezoidal-Type Demand Rate and TimeDependent Deterioration and Backlogging, Expert Syst. Appl. 46 (2016), 367–379. https://doi.org/10.1016/j.eswa.2015.10.048.
- C. Xu, M. Bai, Q. Wang, Y. Wang, An Inventory System Optimization for Solving Joint Pricing and Ordering Problem with Trapezoidal Demand and Partial Backlogged Shortages in a Limited Sales Period, in: D.-Z. Du, D. Du, C. Wu, D. Xu (Eds.), Theory and Applications of Models of Computation, Springer, Cham, 2022: pp. 359–369. https://doi.org/10.1007/978-3-031-20350-3_29.
- C. Xu, D. Zhao, J. Min, J. Hao, An Inventory Model for Nonperishable Items with Warehouse Mode Selection and Partial Backlogging under Trapezoidal-Type Demand, J. Oper. Res. Soc. 72 (2021), 744–763. https://doi.org/10.1080/01605682.2019.1708822.