Exploring the Difference Paralindelöf in Topological Spaces

Main Article Content

Ali A. Atoom, Rahmeh Alrababah, Maryam Alholi, Hamza Qoqazeh, Abeer Alnana, Diana Amin Mahmoud

Abstract

This study investigates emerging concepts for defining and categorizing topological spaces based on various features. Paralindelöf spaces are one such idea that is required to understand the compactness and covering features of topological spaces. This study is the first to introduce D-paralindelöf spaces, a novel type of topological space defined combining D-sets and paralindelöf spaces. The study's goal is to offer precise definitions for paralindelöf spaces and D-paralindelöf spaces, while also investigating their properties and linkages with other forms of topological spaces. The study contains various theoretical conclusions, definitions, and features that are rigorously proven by extending previous theorems on paralindelöf spaces. It is further backed by extensive illustrative examples.

Article Details

References

  1. R. Engelking, General Topology, 2nd ed., Heldermann Verlag, Berlin, 1989.
  2. F.D. Tall, Set-Theoretic Consistency Results and Topological Theorems Concerning the Normal Moore Space Conjecture and Related Problems, Instytut Matematyczny Polskiej Akademi Nauk, Warszawa, 1977.
  3. J. Oudetallah, M.M. Rousan, I.M. Batiha, On D-Metacompactness in Topological Spaces, J. Appl. Math. Inform. 39 (2021), 919–926. https://doi.org/10.14317/JAMI.2021.919.
  4. H. Qoqazeh, Y. Al-Qudah, M. Almousa, A. Jaradat, On D-Compact Topological Spaces, J. Appl. Math. Inform. 39 (2021), 883–894. https://doi.org/10.14317/JAMI.2021.883.
  5. J. Dieudonne, Une Généralisation des Espaces Compacts, J. Math. Pures Appl. 23 (1944), 65-76.
  6. N.C. Açikgöz, On Γ-Paracompact Spaces, Konuralp J. Math. 11 (2023), 77-81.
  7. S. Al Ghour, Decomposition, Mapping, and Sum Theorems of ω-Paracompact Topological Spaces, Axioms 10 (2021), 339. https://doi.org/10.3390/axioms10040339.
  8. A. Atoom, H. Qoqazeh, M. M Alholi, et al. A New Outlook on Omega Closed Functions in Bitopological Spaces and Related Aspects, Eur. J. Pure Appl. Math. 17 (2024), 2574–2585. https://doi.org/10.29020/nybg.ejpam.v17i4.5347.
  9. R. Alrababah, A. Amourah, J. Salah, et al. New Results on Difference Paracompactness in Topological Spaces, Eur. J. Pure Appl. Math. 17 (2024), 2990–3003. https://doi.org/10.29020/nybg.ejpam.v17i4.5426.
  10. S.H. Al Ghour, Some Generalizations of Paracompactness, Missouri J. Math. Sci. 18 (2006), 64-77. https://doi.org/10.35834/2006/1801064.
  11. F. Bani-ahmad, A.A. Atoom, Between Pairwise -α- Perfect Functions and Pairwise -t- α- Perfect Functions, J. Appl. Math. Inform. 84 (2024), 15-29.
  12. K. Al-Zoubi, S. Al-Ghour, On P3-Paracompact Spaces, Int. J. Math. Math. Sci. 2007 (2007), 80697. https://doi.org/10.1155/2007/80697.
  13. N. Abu-Alkishik, E. Almuhur, H. Qoqazeh, et al. Results Concerning Paracompact and Strongly Paracompact Spaces, Int. J. Math. Comput. Methods 9 (2024), 71-77.
  14. K.Y. Al-Zoubi, S-Paracompact Spaces, Acta Math. Hung. 110 (2006), 165–174. https://doi.org/10.1007/s10474-006-0001-4.
  15. A. Atoom, H. Qoqazeh, M. M Alholi, E. ALmuhur, et al. A New Outlook on Omega Closed Functions in Bitopological Spaces and Related Aspects, Eur. J. Pure Appl. Math. 17 (2024), 2574–2585. https://doi.org/10.29020/nybg.ejpam.v17i4.5347.
  16. J. Oudetallah, M. Al-Hawari, H. Hdeib, On Expandability in Bitopological Spais, Theor. Math. Appl. 10 (2020), 1-8.
  17. I. Demir, B. Ozbakir, On β-Paracompact Spaces, Filomat 27 (2013), 971–976. https://doi.org/10.2298/FIL1306971D.
  18. M.N. Mukherjee, A. Debray, On Nearly Paracompact Spaces via Regular Even Covers, Mat. Vesn. 50 (1998), 23-29.
  19. A.A. Atoom, H. Qoqazeh, N. Abu-Alkishik, Study the Structure of Difference Lindelöf Topological Spaces and Their Properties, J. Appl. Math. Inform. 42 (2024), 471–481. https://doi.org/10.14317/JAMI.2024.471.
  20. M.K. Singal, S.P. Arya, On Nearly Paracompact Spaces, Mat. Vesn. 6 (1969), 3-16.
  21. A.A. Atoom, H. Qoqazeh, R. Alrababah, E. Almuhur, N. Abu-Alkishik, Significant Modification of Pairwise-ω-Continuous Functions with Associated Concepts, WSEAS Trans. Math. 22 (2023), 961–970. https://doi.org/10.37394/23206.2023.22.105.
  22. E. Turanli, O.B. Özbakir, On β1-L-Paracompact Spaces, Konuralp J. Math. 7 (2019), 73-78.
  23. Z. Frolík, Generalizations of Compact and Lindelöf Spaces, Czechoslov. Math. J. 9 (1959), 172-217. https://dml.cz/handle/10338.dmlcz/100348.
  24. D.K. Burke, Paralindelöf Spaces and Closed Mappings, Topol. Proc. 5 (1980), 47-57.
  25. J. Tong, A Separation Axiom between T0 and T1, Ann. Soc. Sci. Bruxelles 96 (1982), 85-90.
  26. W.G. Fleissner, Normal, Not Paracompact Spaces, Bull. Amer. Math. Soc. 7 (1982), 233-236.
  27. G. Balasubramanian, On Some Generalizations of Compact Spaces, Glasnik Mat. 17 (1982), 367-380.
  28. S. Willard, U.N.B. Dissanayake, The Almost Lindelöf Degree, Can. Math. Bull. 27 (1984), 452–455. https://doi.org/10.4153/CMB-1984-070-2.
  29. M. Ganster, D.S. Janković, I.L. Reilly, On Compactness with Respect to Semi-Open Sets, Comment. Math. Univ. Carol. 31 (1990), 37-39. http://dml.cz/dmlcz/106817.
  30. F. Cammaroto, G. Santoro, Some Counterexamples and Properties on Generalizations of Lindelöf Spaces, Int. J. Math. Math. Sci. 19 (1996), 737–746. https://doi.org/10.1155/S0161171296001020.
  31. A.J. Fawakhreh, A. Kiliçman, On Generalizations of regular‐Lindelöf Spaces, Int. J. Math. Math. Sci. 27 (2001), 535–539. https://doi.org/10.1155/S016117120100713X.
  32. M. Barr, J.F. Kennison, R. Raphael, On Productively Lindelöf Spaces, Sci. Math. Japon. 56 (2007), 319-332.
  33. A. Kilicman, Z. Salleh, On Pairwise Lindelöf Bitopological Spaces, Topol. Appl. 154 (2007), 1600–1607. https://doi.org/10.1016/j.topol.2006.12.007.
  34. A.Y.J. Al-Faham, H.K. Al-Awadi, On Para-Lindelöf and Semi-Para-Lindelöf Bitopological Spaces, Al-Nahrain J. Sci. 12 (2009), 121-125.
  35. I.J.K. Al-Fatlawee, On Paralindelöf and Semi-Paralindelöf Spaces, J. Al-Qadisiyah Comput. Sci. Math. 1 (2010), 56-63.
  36. I. Juhász, V.V. Tkachuk, R.G. Wilson, Weakly Linearly Lindelöf Monotonically Normal Spaces Are Lindelöf, Stud. Sci. Math. Hung. 54 (2017), 523–535. https://doi.org/10.1556/012.2017.54.4.1383.
  37. A. Dhanabalan, P. Padma, Functions of Nearly μ-Paralindelöf Spaces, Acta Ciencia Indica, 2 (2017), 94-100.
  38. F. Bani-Ahmad, O. Alsayyed, A.A. Atoom, Some New Results of Difference Perfect Functions in Topological Spaces, AIMS Math. 7 (2022), 20058–20065. https://doi.org/10.3934/math.20221097.
  39. M.S. Sarsak, On μ-β-Lindelöf Sets in Generalized Topological Spaces, Heliyon 9 (2023), e13597. https://doi.org/10.1016/j.heliyon.2023.e13597.
  40. Y.-K. Song, W.-F. Xuan, Remarks on Star Weakly Lindelöf Spaces, Quaest. Math. 46 (2023), 73–83. https://doi.org/10.2989/16073606.2021.2010829.
  41. R. Arens, Remark on the Concept of Compactness, Portugaliae Math. 9 (1950), 141-143.
  42. P. Fletcher, H.B. Hoyle, Iii, C.W. Patty, The Comparison of Topologies, Duke Math. J. 36 (1969), 325-331. https://doi.org/10.1215/S0012-7094-69-03641-2.
  43. E. Grabner, G. Grabner, J.E. Vaughan, Nearly Metacompact Spaces, Topol. Appl. 98 (1999), 191–201. https://doi.org/10.1016/S0166-8641(98)00107-2.
  44. M. Caldas, A Separation Axiom Between Semi-T0 And Semi-T1, Pro Math. 11 (1997), 89-96.
  45. J.R. Munkres, Topology, 2nd ed, Prentice Hall, Upper Saddle River (N. J.), 2000.
  46. M.M. Rousan, J. Oudetallah, On Metacompactness in Topological Spaces, Int. J. Math. Comput. Res. 11 (2023), 3494-3496. https://doi.org/10.47191/ijmcr/v11i6.04.