Flow Representation of the Navier-Stokes Equations in Weighted Sobolev Spaces

Main Article Content

Sekson Sirisubtawee, Naowarat Manitcharoen, Chukiat Saksurakan

Abstract

Using Constantin-Iyer representation also known more generally as Euler-Lagrangian approach, we prove the local existence of the Navier-Stokes equations in weighted Sobolev spaces with external forcing on Rd, for any dimension d and p such that p>d≥2.

Article Details

References

  1. V. Arnold, Sur la Géométrie Différentielle des Groupes de Lie de Dimension Infinie et ses Applications à l’Hydrodynamique des Fluides Parfaits, Ann. Inst. Fourier 16 (1966), 319–361. https://doi.org/10.5802/aif.233.
  2. D.G. Ebin, J. Marsden, Groups of Diffeomorphisms and the Motion of an Incompressible Fluid, Ann. Math. 92 (1970), 102-163. https://doi.org/10.2307/1970699.
  3. D.G. Ebin, A Concise Presentation of the Euler Equations of Hydrodynamics, Commun. Partial Differ. Equ. 9 (1984), 539–559. https://doi.org/10.1080/03605308408820341.
  4. R. Mikulevicius, G. Valiukevicius, On Stochastic Euler Equation in Rd, Electron. J. Probab. 5 (2000), 1-20. https://doi.org/10.1214/EJP.v5-62.
  5. M. Maurelli, K. Modin, A. Schmeding, Incompressible Euler Equations with Stochastic Forcing: A Geometric Approach, Stoch. Process. Their Appl. 159 (2023), 101–148. https://doi.org/10.1016/j.spa.2023.01.011.
  6. P. Constantin, G. Iyer, A Stochastic Lagrangian Representation of the Three-dimensional Incompressible NavierStokes Equations, Commun. Pure Appl. Math. 61 (2008), 330–345. https://doi.org/10.1002/cpa.20192.
  7. G. Iyer, A Stochastic Perturbation of Inviscid Flows, Commun. Math. Phys. 266 (2006), 631–645. https://doi.org/10.1007/s00220-006-0058-5.
  8. B.C. Pooley, J.C. Robinson, An Eulerian–Lagrangian Form for the Euler Equations in Sobolev Spaces, J. Math. Fluid Mech. 18 (2016), 783–794. https://doi.org/10.1007/s00021-016-0271-8.
  9. C. Olivera, J.D. Londoño, Euler–Lagrangian Approach to Stochastic Euler Equations in Sobolev Spaces, J. Math. Fluid Mech. 25 (2023), 61. https://doi.org/10.1007/s00021-023-00808-5.
  10. F. Flandoli, D. Luo, Euler-Lagrangian Approach to 3D Stochastic Euler Equations, J. Geom. Mech. 11 (2019), 153–165. https://doi.org/10.3934/jgm.2019008.
  11. M. Cantor, S.S. Chern, Spaces of Functions With Asymptotic Conditions on Rn, Indiana Univ. Math. J. 24 (1975), 897-902. https://www.jstor.org/stable/24890952.
  12. M. Cantor, Perfect Fluid Flows over Rn with Asymptotic Conditions, J. Funct. Anal. 18 (1975), 73-84.
  13. L. Stupelis, Navier-Stokes Equations in Irregular Domains, Springer, Dordrecht, 1995.
  14. L.C. Evans, Partial Differential Equations, American Mathematical Society, 1998.
  15. R. Mikulevicius, On the Cauchy Problem for Stochastic Stokes Equations, SIAM J. Math. Anal. 34 (2002), 121–141. https://doi.org/10.1137/S0036141001390312.
  16. R. Mikulevicius, B.L. Rozovskii, Stochastic Navier–Stokes Equations for Turbulent Flows, SIAM J. Math. Anal. 35 (2004), 1250–1310. https://doi.org/10.1137/S0036141002409167.
  17. R.A. Adams, J.J.F. Fournier, Sobolev Spaces, Elsevier, 2003.
  18. J.M. Leahy, R. Mikulevicius, On Some Properties of Space Inverses of Stochastic Flows, Stoch. Partial Differ. Equ. Anal. Comput. 3 (2015), 445–478. https://doi.org/10.1007/s40072-015-0056-8.
  19. H. Cartan, Differntial Calculus, Hermann, 1971.
  20. D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, 1998.
  21. E. Stein, Harmonic Analysis, Princeton University Press, 1993.