Flow Representation of the Navier-Stokes Equations in Weighted Sobolev Spaces
Main Article Content
Abstract
Using Constantin-Iyer representation also known more generally as Euler-Lagrangian approach, we prove the local existence of the Navier-Stokes equations in weighted Sobolev spaces with external forcing on Rd, for any dimension d and p such that p>d≥2.
Article Details
References
- V. Arnold, Sur la Géométrie Différentielle des Groupes de Lie de Dimension Infinie et ses Applications à l’Hydrodynamique des Fluides Parfaits, Ann. Inst. Fourier 16 (1966), 319–361. https://doi.org/10.5802/aif.233.
- D.G. Ebin, J. Marsden, Groups of Diffeomorphisms and the Motion of an Incompressible Fluid, Ann. Math. 92 (1970), 102-163. https://doi.org/10.2307/1970699.
- D.G. Ebin, A Concise Presentation of the Euler Equations of Hydrodynamics, Commun. Partial Differ. Equ. 9 (1984), 539–559. https://doi.org/10.1080/03605308408820341.
- R. Mikulevicius, G. Valiukevicius, On Stochastic Euler Equation in Rd, Electron. J. Probab. 5 (2000), 1-20. https://doi.org/10.1214/EJP.v5-62.
- M. Maurelli, K. Modin, A. Schmeding, Incompressible Euler Equations with Stochastic Forcing: A Geometric Approach, Stoch. Process. Their Appl. 159 (2023), 101–148. https://doi.org/10.1016/j.spa.2023.01.011.
- P. Constantin, G. Iyer, A Stochastic Lagrangian Representation of the Three-dimensional Incompressible NavierStokes Equations, Commun. Pure Appl. Math. 61 (2008), 330–345. https://doi.org/10.1002/cpa.20192.
- G. Iyer, A Stochastic Perturbation of Inviscid Flows, Commun. Math. Phys. 266 (2006), 631–645. https://doi.org/10.1007/s00220-006-0058-5.
- B.C. Pooley, J.C. Robinson, An Eulerian–Lagrangian Form for the Euler Equations in Sobolev Spaces, J. Math. Fluid Mech. 18 (2016), 783–794. https://doi.org/10.1007/s00021-016-0271-8.
- C. Olivera, J.D. Londoño, Euler–Lagrangian Approach to Stochastic Euler Equations in Sobolev Spaces, J. Math. Fluid Mech. 25 (2023), 61. https://doi.org/10.1007/s00021-023-00808-5.
- F. Flandoli, D. Luo, Euler-Lagrangian Approach to 3D Stochastic Euler Equations, J. Geom. Mech. 11 (2019), 153–165. https://doi.org/10.3934/jgm.2019008.
- M. Cantor, S.S. Chern, Spaces of Functions With Asymptotic Conditions on Rn, Indiana Univ. Math. J. 24 (1975), 897-902. https://www.jstor.org/stable/24890952.
- M. Cantor, Perfect Fluid Flows over Rn with Asymptotic Conditions, J. Funct. Anal. 18 (1975), 73-84.
- L. Stupelis, Navier-Stokes Equations in Irregular Domains, Springer, Dordrecht, 1995.
- L.C. Evans, Partial Differential Equations, American Mathematical Society, 1998.
- R. Mikulevicius, On the Cauchy Problem for Stochastic Stokes Equations, SIAM J. Math. Anal. 34 (2002), 121–141. https://doi.org/10.1137/S0036141001390312.
- R. Mikulevicius, B.L. Rozovskii, Stochastic Navier–Stokes Equations for Turbulent Flows, SIAM J. Math. Anal. 35 (2004), 1250–1310. https://doi.org/10.1137/S0036141002409167.
- R.A. Adams, J.J.F. Fournier, Sobolev Spaces, Elsevier, 2003.
- J.M. Leahy, R. Mikulevicius, On Some Properties of Space Inverses of Stochastic Flows, Stoch. Partial Differ. Equ. Anal. Comput. 3 (2015), 445–478. https://doi.org/10.1007/s40072-015-0056-8.
- H. Cartan, Differntial Calculus, Hermann, 1971.
- D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, 1998.
- E. Stein, Harmonic Analysis, Princeton University Press, 1993.