Arithmetic Relation Between Family of Elliptic Curves Over Finite Field

Main Article Content

Haleemah Ghazwani

Abstract

Let \(\mathbb{F}_{q}\) be a finite field, where \(q\) is an odd prime such that \(q>3\). Let \(f\left(t\right) =t^{3}-t\) \(\in \mathbb{F}_{q}\left[ t\right]\) be a polynomial of degree 3. For \(\lambda \neq 0\) in \(\mathbb{F}_{q}\), consider families of elliptic curves \(\left\{ E_{\lambda }\right\} _{\lambda \in \mathbb{F}_{q}^{\ast}}\) and \(\left\{ H_{\lambda }\right\} _{\lambda \in \mathbb{F}_{q}^{\ast }}\) defined respectively by
\[v^{2}=\lambda f(u)\text{ and }f\left( v\right) =\lambda f(u).\]
In this paper, I investigate the relation between the rational points over finite field on \(\left\{E_{\lambda }\left( \mathbb{F}_{q}\right) \right\}_{\lambda \in \mathbb{F}_{q}^{\ast }}\) and \(\left\{ H_{\lambda }\left(\mathbb{F}_{q}\right) \right\} _{_{\lambda \in \mathbb{F}_{q}^{\ast }}}\), and determine the number of rational points on both of these family of curves.

Article Details

References

  1. B.C. Berndt, R.J. Evans, K.S. Williams, Gauss and Jacobi Sums, Wiley, New York, 1998.
  2. W. Fulton, R. Weiss, Algebraic Curves: An Introduction to Algebraic Geometry, Addison-Wesley Pub. Co., Redwood City, 2008.
  3. G.-M. Greuel, G. Pfister, A Singular Introduction to Commutative Algebra: With Contributions by Olaf Bachmann, Christoph Lossen and Hans Schönemann, Springer, 2008.
  4. H. Ghazwani, On the Genus of Holm’s Curve over Finite Field, J. Algebra Appl. Math. 21 (2023), 1-16.
  5. R. Lidl, H. Niederreiter, Finite Fields, 2nd ed., Cambridge University Press, 1996. https://doi.org/10.1017/CBO9780511525926.
  6. A. Rajan, F. Ramaroson, Ratios of Congruent Numbers, Acta Arith. 128 (2007), 101-106.
  7. L.C. Washington, Elliptic Curves: Number Theory and Cryptography, Chapman and Hall/CRC, 2008. https://doi.org/10.1201/9781420071474.