Arithmetic Relation Between Family of Elliptic Curves Over Finite Field
Main Article Content
Abstract
Let \(\mathbb{F}_{q}\) be a finite field, where \(q\) is an odd prime such that \(q>3\). Let \(f\left(t\right) =t^{3}-t\) \(\in \mathbb{F}_{q}\left[ t\right]\) be a polynomial of degree 3. For \(\lambda \neq 0\) in \(\mathbb{F}_{q}\), consider families of elliptic curves \(\left\{ E_{\lambda }\right\} _{\lambda \in \mathbb{F}_{q}^{\ast}}\) and \(\left\{ H_{\lambda }\right\} _{\lambda \in \mathbb{F}_{q}^{\ast }}\) defined respectively by
\[v^{2}=\lambda f(u)\text{ and }f\left( v\right) =\lambda f(u).\]
In this paper, I investigate the relation between the rational points over finite field on \(\left\{E_{\lambda }\left( \mathbb{F}_{q}\right) \right\}_{\lambda \in \mathbb{F}_{q}^{\ast }}\) and \(\left\{ H_{\lambda }\left(\mathbb{F}_{q}\right) \right\} _{_{\lambda \in \mathbb{F}_{q}^{\ast }}}\), and determine the number of rational points on both of these family of curves.
Article Details
References
- B.C. Berndt, R.J. Evans, K.S. Williams, Gauss and Jacobi Sums, Wiley, New York, 1998.
- W. Fulton, R. Weiss, Algebraic Curves: An Introduction to Algebraic Geometry, Addison-Wesley Pub. Co., Redwood City, 2008.
- G.-M. Greuel, G. Pfister, A Singular Introduction to Commutative Algebra: With Contributions by Olaf Bachmann, Christoph Lossen and Hans Schönemann, Springer, 2008.
- H. Ghazwani, On the Genus of Holm’s Curve over Finite Field, J. Algebra Appl. Math. 21 (2023), 1-16.
- R. Lidl, H. Niederreiter, Finite Fields, 2nd ed., Cambridge University Press, 1996. https://doi.org/10.1017/CBO9780511525926.
- A. Rajan, F. Ramaroson, Ratios of Congruent Numbers, Acta Arith. 128 (2007), 101-106.
- L.C. Washington, Elliptic Curves: Number Theory and Cryptography, Chapman and Hall/CRC, 2008. https://doi.org/10.1201/9781420071474.