Intuitionistic Fuzzy Soft Boolean Rings

Main Article Content

Gadde Sambasiva Rao, D. Ramesh, Aiyared Iampan, B. Satyanarayana, P. Rajani

Abstract

Maji et al. [10] presented the idea of intuitionistic fuzzy soft sets (IFSSs), which build on intuitionistic fuzzy sets (IFSs) and soft sets. In this paper, we extend the notion of IFSs to Boolean rings (BRs). We briefly overview intuitionistic fuzzy soft Boolean rings (IFSBRs) and list some of their fundamental characteristics. We define the intersection, union, AND, and OR operations of IFSBRs. We then present the definitions of IFSIs and consider a few associated findings.

Article Details

References

  1. K.T. Atanassov, Intuitionistic Fuzzy Sets, in: Intuitionistic Fuzzy Sets, Physica-Verlag HD, Heidelberg, 1999: pp. 1–137. https://doi.org/10.1007/978-3-7908-1870-3_1.
  2. B. Davvaz, P. Corsini, V. Leoreanu-Fotea, Atanassov’s Intuitionistic (S,T)-Fuzzy n-Ary Sub-Hypergroups and Their Properties, Inf. Sci. 179 (2009), 654–666. https://doi.org/10.1016/j.ins.2008.10.023.
  3. B. Davvaz, W.A. Dudek, Y.B. Jun, Intuitionistic Fuzzy Hν-Submodules, Inf. Sci. 176 (2006), 285-300. https://doi.org/10.1016/j.ins.2004.10.009.
  4. B. Davvaz, S.K. Majumder, Atanassov’s Intuitionistic Fuzzy Interior Ideals of Γ-Semigroups, UPB Sci. Bull. Ser. A, 73 (2011), 45-60.
  5. S.K. De, R. Biswas, A.R. Roy, Some Operations on Intuitionistic Fuzzy Sets, Fuzzy Sets Syst. 114 (2000), 477–484. https://doi.org/10.1016/S0165-0114(98)00191-2.
  6. W. Dudek, B. Davvaz, Y. Jun, On Intuitionistic Fuzzy Sub-Hyperquasigroups of Hyperquasigroups, Inf. Sci. 170 (2005), 251–262. https://doi.org/10.1016/j.ins.2004.02.025.
  7. E. Inan, M.A. Öztürk, Fuzzy Soft Rings and Fuzzy Soft Ideals, Neural Comput. Appl. 21 (2012), 1–8. https://doi.org/10.1007/s00521-011-0550-5.
  8. U.B. Madhavi, V.J. Sree, D. Ramesh, B. Satyanarayana, Intuitionistic Fuzzy Translations of Implicative Ideals of BCK-Algebra, J. Gujarat Res. Soc. 21 (2019), 528-533.
  9. P.K. Maji, R. Biswas, A.R. Roy, Fuzzy soft sets, J. Fuzzy Math. 9 (2001), 589-602.
  10. P.K. Maji, R. Biswas, A.R. Roy, Intuitionistic Fuzzy Soft Sets, J. Fuzzy Math. 9 (2001), 677-692.
  11. P.K. Maji, R. Biswas, A.R. Roy, Soft Set Theory, Comput. Math. Appl. 45 (2003), 555–562. https://doi.org/10.1016/S0898-1221(03)00016-6.
  12. D. Molodtsov, Soft Set Theory–First Results, Comput. Math. Appl. 37 (1999), 19–31. https://doi.org/10.1016/S0898-1221(99)00056-5.
  13. D. Ramesh, K.K. Rao, R.D. Prasad, N. Srimannarayana, B. Satyanarayana, Translations of Intuitionistic Fuzzy Subalgebras in BF-Algebras, Adv. Math.: Sci. J. 9 (2020), 8837–8844. https://doi.org/10.37418/amsj.9.10.107.
  14. S.R. Gadde, Pushpalatha. Kolluru, B.P. Munagala, A Note on Soft Boolean Near-Rings, AIP Conf. Proc. 2707 (2023), 020013. https://doi.org/10.1063/5.0148444.
  15. S.R. Gadde, P. Kolluru, N. Thandu, Soft Intersection Boolean Near-Rings with Its Applications, AIP Conf. Proc. 2707 (2023), 020012. https://doi.org/10.1063/5.0148443.
  16. G.S. Rao, K. Pushpalatha, Ramesh D., S.V.M. Sarma, G. Vijayalakshmi, A Study on Boolean like Algebras, AIP Conf. Proc. 2375 (2021), 020018. https://doi.org/10.1063/5.0066293.
  17. G.S. Rao, D. Ramesh, A. Iampan, B. Satyanarayana, Fuzzy Soft Boolean Rings, Int. J. Anal. Appl. 21 (2023), 60. https://doi.org/10.28924/2291-8639-21-2023-60.
  18. G.S. Rao, R. Dasari, A. Iampan, B. Satyanarayana, Fuzzy Soft Boolean Near-Rings and Idealistic Fuzzy Soft Boolean Near-Rings, ICIC Express Lett. 18 (2024), 677-684. https://doi.org/10.24507/icicel.18.07.677.
  19. G.S. Rao, D. Ramesh, and B. Satyanarayana, (∈, ∈ ∨qk )-Fuzzy soft Boolean near rings, Asia Pac. J. Math. 10 (2023), 50 https://doi.org/10.28924/APJM/10-50.
  20. A.R. Roy, P.K. Maji, A Fuzzy Soft Set Theoretic Approach to Decision Making Problems, J. Comput. Appl. Math. 203 (2007), 412–418. https://doi.org/10.1016/j.cam.2006.04.008.
  21. B. Satyanarayana, D. Ramesh, Y.P. Kumar, Interval Valued Intuitionistic Fuzzy Homomorphism of BF-Algebras, Math. Theory Model. 3 (2013), 15-23.
  22. B. Satyanarayana, D. Ramesh, R.D. Prasad, On Interval-Valued Intuitionistic Fuzzy Ideals of BF-Algebras, J. Comput. Math. Sci. 3 (2012), 83-96.
  23. L.A. Zadeh, Fuzzy Sets, Inf. Control 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X.