Exploring Solutions to the Stochastic Fractional Zakharov-Kuznetsov Equation Influenced by Space-Time White Noise Using the Tanh-Coth Method

Main Article Content

Abaker A. Hassaballa

Abstract

This study investigates the stochastic fractional Zakharov-Kuznetsov equation (SFZKE) influenced by space-time white noise, utilizing the conformable fractional derivative (CFD). The primary objective is to employ the Tanh-Coth method to derive soliton, wave, and periodic solutions for SFZKE under varying conditions of space-time white noise and fractional order. A broader spectrum of exact analytical solutions for the SFZKE has been achieved. Graphical representations are provided to highlight the physical properties of the obtained solutions. The Tanh-Coth method is demonstrated to be a reliable and effective approach for solving stochastic fractional partial differential equations.

Article Details

References

  1. B. Øksendal, Stochastic Differential Equations: An Introduction with Applications, Springer, Berlin, Heidelberg, 2003. https://doi.org/10.1007/978-3-642-14394-6.
  2. G. Da Prato, L. Tubaro, eds., Stochastic Partial Differential Equations and Applications, CRC Press, 2002. https://doi.org/10.1201/9780203910177.
  3. G. Da Prato, J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, 2014. https://doi.org/10.1017/CBO9781107295513.
  4. L.J.S. Allen, An Introduction to Stochastic Processes with Applications to Biology, Chapman and Hall/CRC, 2003. https://doi.org/10.1201/b12537.
  5. P. Del Moral, S. Penev, Stochastic Processes: From Applications to Theory, Chapman and Hall/CRC, 2014. https://doi.org/10.1201/9781315381619.
  6. V.E. Zakharov, E.A. Kuznetsov, Three-Dimensional Solitons, Sov. Phys.-JETP, 39 (1974), 285-286.
  7. A. Yıldırım, Y. Gülkanat, Analytical Approach to Fractional Zakharov–Kuznetsov Equations by He’s Homotopy Perturbation Method, Commun. Theor. Phys. 53 (2010), 1005–1010. https://doi.org/10.1088/0253-6102/53/6/02.
  8. S. Sahoo, S. Saha Ray, Improved Fractional Sub-Equation Method for (3+1) -Dimensional Generalized Fractional KdV–Zakharov–Kuznetsov Equations, Comput. Math. Appl. 70 (2015), 158–166. https://doi.org/10.1016/j.camwa.2015.05.002.
  9. R. Yulita Molliq, M.S.M. Noorani, I. Hashim, R.R. Ahmad, Approximate Solutions of Fractional Zakharov–Kuznetsov Equations by VIM, J. Comput. Appl. Math. 233 (2009), 103–108. https://doi.org/10.1016/j.cam.2009.03.010.
  10. A. Korkmaz, Exact Solutions to (3+1) Conformable Time Fractional Jimbo–Miwa, Zakharov–Kuznetsov and Modified Zakharov–Kuznetsov Equations, Commun. Theor. Phys. 67 (2017), 479. https://doi.org/10.1088/0253-6102/67/5/479.
  11. H. Xie, Galerkin Spectral Method of Stochastic Partial Differential Equations Driven by Multivariate Poisson Measure, J. Math. 2024 (2024), 9945531. https://doi.org/10.1155/2024/9945531.
  12. W.W. Mohammed, R. Qahiti, H. Ahmad, J. Baili, F.E. Mansour, M. El-Morshedy, Exact Solutions for the System of Stochastic Equations for the Ion Sound and Langmuir Waves, Results Phys. 30 (2021), 104841. https://doi.org/10.1016/j.rinp.2021.104841.
  13. C. Roth, Difference Methods for Stochastic Partial Differential Equations, ZAMM-J. Appl. Math. Mech. 82 (2002), 821–830. https://doi.org/10.1002/1521-4001(200211)82:11/12<821::AID-ZAMM821>3.0.CO;2-L.
  14. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, Boston, 2006.
  15. I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Academic Press, San Diego, 1998.
  16. R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A New Definition of Fractional Derivative, J. Comput. Appl. Math. 264 (2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002.
  17. T. Abdeljawad, On Conformable Fractional Calculus, J. Comput. Appl. Math. 279 (2015), 57–66. https://doi.org/10.1016/j.cam.2014.10.016.
  18. M.K. Deb, I.M. Babuška, J.T. Oden, Solution of Stochastic Partial Differential Equations Using Galerkin Finite Element Techniques, Comput. Methods Appl. Mech. Eng. 190 (2001), 6359–6372. https://doi.org/10.1016/S0045-7825(01)00237-7.
  19. K. Shi, Y. Wang, On a Stochastic Fractional Partial Differential Equation Driven by a Lévy Space-Time White Noise, J. Math. Anal. Appl. 364 (2010), 119–129. https://doi.org/10.1016/j.jmaa.2009.11.010.
  20. B.P. Moghaddam, A. Babaei, A. Dabiri, A. Galhano, Fractional Stochastic Partial Differential Equations: Numerical Advances and Practical Applications—A State of the Art Review, Symmetry 16 (2024), 563. https://doi.org/10.3390/sym16050563.
  21. H.A. Ghany, Exact Solutions for Stochastic Fractional Zakharov-Kuznetsov Equations, Chin. J. Phys. 51 (2013), 875-881. https://doi.org/10.6122/CJP.51.875.
  22. W.W. Mohammed, F.M. Al-Askar, C. Cesarano, M. El-Morshedy, Solitary Wave Solutions of the Fractional-Stochastic Quantum Zakharov–Kuznetsov Equation Arises in Quantum Magneto Plasma, Mathematics 11 (2023), 488. https://doi.org/10.3390/math11020488.
  23. N. Wiener, Differential‐Space, J. Math. Phys. 2 (1923), 131–174. https://doi.org/10.1002/sapm192321131.
  24. W. Malfliet, Solitary Wave Solutions of Nonlinear Wave Equations, Amer. J. Phys. 60 (1992), 650–654. https://doi.org/10.1119/1.17120.
  25. J. Manafian, M. Lakestani, A. Bekir, Comparison between the Generalized tanh–Coth and the (G′/G)-Expansion Methods for Solving NPDEs and NODEs, Pramana 87 (2016), 95. https://doi.org/10.1007/s12043-016-1292-9.
  26. R. Asokan, D.V. Vinodh, The tanh-coth Method for Soliton and Exact Solutions of the Sawada-Kotera Equation, Int. J. Pure Appl. Math. 117 (2017), 19-27.
  27. A.-M. Wazwaz, The tanh–coth and the sine–cosine Methods for Kinks, Solitons, and Periodic Solutions for the Pochhammer–Chree Equations, Appl. Math. Comput. 195 (2008), 24–33. https://doi.org/10.1016/j.amc.2007.04.066.
  28. M. Yaghobi Moghaddam, A. Asgari, H. Yazdani, Exact Travelling Wave Solutions for the Generalized Nonlinear Schrödinger (GNLS) Equation with a Source by Extended Tanh–Coth, Sine–Cosine and Exp-Function Methods, Appl. Math. Comput. 210 (2009), 422–435. https://doi.org/10.1016/j.amc.2009.01.002.
  29. K. Raslan, Z. F. Abu Shaeer, The tanh Methods for the Hirota Equations, Int. J. Comput. Appl. 107 (2014), 5–9. https://doi.org/10.5120/18793-0134.
  30. A.M. Wazwaz, The tanh Method for Traveling Wave Solutions of Nonlinear Equations, Appl. Math. Comput. 154 (2004), 713–723. https://doi.org/10.1016/S0096-3003(03)00745-8.