Heat and Mass Transfer Analysis of Magnetized Micropolar Nanofluid Flow With Soret and Dufour Effects: Triple Solutions
Main Article Content
Abstract
Energy and mass transfer play a major role in several engineering and technological processes, such as air conditioning, mechanical power collectors, food processing, refrigeration, and heat exchangers. This research aims to investigate the radiative flow of an incompressible hydromagnetic micropolar nanofluid by incorporating Soret and Dufour effects. The flow partial differential equations of this study are developed using the boundary layer approximation. The modeled equations are then transformed into nonlinear ordinary differential equations by applying the appropriate transformation. The MATLAB package that comes with BVP4C is used to establish the numerical solutions for this investigation. In addition, a comparison of the outcomes is presented with previously published material. The comparison shows that, in a particular case, our current results resemble the previous results very well. It is observed that temperature distribution shows an increasing behavior against the increment in Soret and Dufour impacts.
Article Details
References
- S.U.S. Choi, J.A. Eastman, Enhancing Thermal Conductivity of Fluids with Nanoparticles, in: International Mechanical Engineering Congress and Exhibition, San Francisco, CA, 1995. https://www.osti.gov/biblio/196525.
- A. Bouchireb, I. Khan, M. Kezzar, S. Alqahtani, M.R. Sari, K. Rafique, I. Tabet, Mhd Flow of Hybrid Nanofluid Between Convergent/divergent Channel by Using Daftardar-Jafari Method, BioNanoScience 14 (2024), 1583-1600. https://doi.org/10.1007/s12668-024-01401-4.
- K. Rafique, I. Khan, N.A. Mohammed, S. Alqahtani, T.A. Assiri, Keller Box Numerical Analysis of Power-Law Rotating Disk for Nanofluid Flow with Chemical Reaction, Numer. Heat Transfer, Part A: Appl. (2024), 1–18. https://doi.org/10.1080/10407782.2024.2338263.
- A. Refaie Ali, K. Rafique, M. Imtiaz, R. Jan, H. Alotaibi, I. Mekawy, Exploring Magnetic and Thermal Effects on Mhd Bio-Viscosity Flow at the Lower Stagnation Point of a Solid Sphere Using Keller Box Technique, Partial. Differ. Equ. Appl. Math. 9 (2024), 100601. https://doi.org/10.1016/j.padiff.2023.100601.
- H. Alotaibi, K. Rafique, Numerical Simulation of Nanofluid Flow Between Two Parallel Disks Using 3-Stage Lobatto III-A Formula, Open Phys. 20 (2022), 649-656. https://doi.org/10.1515/phys-2022-0059.
- B. Lemouedda, M. Kezzar, K. Rafique, M.R. Sari, I. Tabet, I. Khan, Ternary Nanoparticles Effect in Rotating Hydromagnetic Jeffery-Hamel Flow of Nanofluids, Proc. Inst. Mech. Eng. Part N: J. Nanomater. Nanoeng. Nanosyst. (2024). https://doi.org/10.1177/23977914241261514.
- K. Cacua, R. Buitrago-Sierra, E. Pabón, A. Gallego, C. Zapata, B. Herrera, Nanofluids Stability Effect on a Thermosyphon Thermal Performance, Int. J. Therm. Sci. 153 (2020), 106347. https://doi.org/10.1016/j.ijthermalsci.2020.106347.
- A. Faqih, F.M. Rafique, K. Aslam, M.Z. Swalmeh, Numerical Analysis on Stagnation Point Flow of Micropolar Nanofluid with Thermal Radiations over an Exponentially Stretching Surface, WSEAS Trans. Fluid Mech. 19 (2024), 40-48.
- P. Durga Prasad, R. Kiran Kumar, S. Varma, Heat and Mass Transfer Analysis for the Mhd Flow of Nanofluid with Radiation Absorption, Ain Shams Eng. J. 9 (2018), 801-813. https://doi.org/10.1016/j.asej.2016.04.016.
- R.P. Sharma, S.R. Mishra, S. Tinker, Influence of Soret and Dufour Effect on MHD Flow over an Exponential Stretching Sheet: A Numerical Study, Indian J. Pure Appl. Phys. 58 (2020), 558-568.
- R.G. Srinivasa, B. Ramana, R.B. Reddy, G. Vidyasagar, Soret and Dufour Effects on MHD Boundary Layer Flow over a Moving Vertical Porous Plate with Suction, Int. J. Emerg. Trends Eng. Dev. 2 (2014), 215-226.
- N. Vedavathi, K. Ramakrishna, K. Jayarami Reddy, Radiation and Mass Transfer Effects on Unsteady Mhd Convective Flow Past an Infinite Vertical Plate with Dufour and Soret Effects, Ain Shams Eng. J. 6 (2015), 363-371. https://doi.org/10.1016/j.asej.2014.09.009.
- G. Rasool, A. Shafiq, D. Baleanu, Consequences of Soret–dufour Effects, Thermal Radiation, and Binary Chemical Reaction on Darcy Forchheimer Flow of Nanofluids, Symmetry 12 (2020), 1421. https://doi.org/10.3390/sym12091421.
- D. Pal, G. Mandal, K. Vajravalu, Soret and Dufour Effects on Mhd Convective–radiative Heat and Mass Transfer of Nanofluids Over a Vertical Non-Linear Stretching/shrinking Sheet, Appl. Math. Comput. 287-288 (2016), 184-200. https://doi.org/10.1016/j.amc.2016.04.037.
- K. Rafique, M.I. Anwar, M. Misiran, M.I. Asjad, Energy and Mass Transport of Micropolar Nanofluid Flow Over an Inclined Surface with Keller‐box Simulation, Heat Transf. 49 (2020), 4592-4611. https://doi.org/10.1002/htj.21843.
- M.A. Kumar, Y.D. Reddy, B.S. Goud, V.S. Rao, Effects of Soret, Dufour, Hall Current and Rotation on Mhd Natural Convective Heat and Mass Transfer Flow Past an Accelerated Vertical Plate Through a Porous Medium, Int. J. Thermofluids 9 (2021), 100061. https://doi.org/10.1016/j.ijft.2020.100061.
- H. ALFVÉN, Existence of Electromagnetic-Hydrodynamic Waves, Nature 150 (1942), 405-406. https://doi.org/10.1038/150405d0.
- N.A. Zainal, R. Nazar, K. Naganthran, I. Pop, Unsteady Mhd Mixed Convection Flow in Hybrid Nanofluid at Three-Dimensional Stagnation Point, Mathematics 9 (2021), 549. https://doi.org/10.3390/math9050549.
- A. Ishak, R. Nazar, I. Pop, Magnetohydrodynamic (MHD) Flow of a Micropolar Fluid Towards a Stagnation Point on a Vertical Surface, Comput. Math. Appl. 56 (2008), 3188-3194. https://doi.org/10.1016/j.camwa.2008.09.013.
- M.G. Reddy, N.B. Reddy, Mass Transfer and Heat Generation Effects on Mhd Free Convection Flow Past an Inclined Vertical Surface in a Porous Medium, J. Appl. Fluid Mech. 4 (2011), 7-11. https://doi.org/10.36884/jafm.4.02.11911.
- S. Baag, S. Mishra, G. Dash, M. Acharya, Numerical Investigation on Mhd Micropolar Fluid Flow Toward a Stagnation Point on a Vertical Surface with Heat Source and Chemical Reaction, J. King Saud Univ. - Eng. Sci. 29 (2017), 75-83. https://doi.org/10.1016/j.jksues.2014.06.002.
- W. Khan, I. Pop, Boundary-layer Flow of a Nanofluid Past a Stretching Sheet, Int. J. Heat Mass Transfer 53 (2010), 2477-2483. https://doi.org/10.1016/j.ijheatmasstransfer.2010.01.032.
- E. Seid, E. Haile, T. Walelign, Multiple Slip, Soret and Dufour Effects in Fluid Flow Near a Vertical Stretching Sheet in the Presence of Magnetic Nanoparticles, Int. J. Thermofluids 13 (2022), 100136. https://doi.org/10.1016/j.ijft.2022.100136.
- P. Orsini, H. Power, M. Lees, H. Morvan, A Control Volume Radial Basis Function Techniques for the Numerical Simulation of Saturated Flows in Semi-Confined Aquifer, Transp. Porous Media 79 (2008), 171-196. https://doi.org/10.1007/s11242-008-9304-y.
- T. Hayat, M.I. Khan, M. Waqas, A. Alsaedi, M.I. Khan, Radiative Flow of Micropolar Nanofluid Accounting Thermophoresis and Brownian Moment, Int. J. Hydrog. Energy 42 (2017), 16821-16833. https://doi.org/10.1016/j.ijhydene.2017.05.006.
- L.A. Lund, Z. Omar, I. Khan, Quadruple Solutions of Mixed Convection Flow of Magnetohydrodynamic Nanofluid Over Exponentially Vertical Shrinking and Stretching Surfaces: Stability Analysis, Comput. Methods Programs Biomed. 182 (2019), 105044. https://doi.org/10.1016/j.cmpb.2019.105044.
- L.A. Lund, Z. Omar, I. Khan, S. Dero, Multiple Solutions of Cu-C6H9NaO7 and Ag- C6H9NaO7 Nanofluids Flow Over Nonlinear Shrinking Surface, J. Cent. South Univ. 26 (2019), 1283-1293. https://doi.org/10.1007/s11771-019-4087-6.