A New Computational Method Based on the Method of Lines and Adomian Decomposition Method for Burgers' Equation and Coupled System of Burgers' Equations
Main Article Content
Abstract
This study proposes a new computational scheme for the solution of the class of one-dimensional Burgers’ equations, comprising mainly the classical Burgers’ equation, and the system of coupled Burgers’ equations. This method is based upon coupling the Method of Lines (MOL) and the prominent Adomian Decomposition Method (ADM) for the reliable computational examination of dissimilar initial-boundary value problems of Burgers’ equations. Certainly, MOL helps with the spatial semi-discretization of the governing problem to a system of nonlinear Ordinary Differential Equations (ODEs); while the ADM contributes to the efficient semi-analytical solution of the resulting nonlinear ODEs. Moreover, the computational accuracy of the new approach has been demonstrated on certain test models and further evaluated using L2 and L∞ norms. Indeed, the method produces better results with minimal errors than many existing computational approaches as successfully reported in various supportive figures and tables.
Article Details
References
- J. Caldwell, P. Smith, Solution of Burgers’ Equation with a Large Reynolds Number, Appl. Math. Model. 6 (1982), 381–385. https://doi.org/10.1016/S0307-904X(82)80102-9.
- A.M. Mubaraki, H. Kim, R.I. Nuruddeen, U. Akram, Y. Akbar, Wave Solutions and Numerical Validation for the Coupled Reaction-Advection-Diffusion Dynamical Model in a Porous Medium, Commun. Theor. Phys. 74 (2022), 125002. https://doi.org/10.1088/1572-9494/ac822a.
- S.E. Esipov, Coupled Burgers Equations: A Model of Polydispersive Sedimentation, Phys. Rev. E 52 (1995), 3711–3718. https://doi.org/10.1103/PhysRevE.52.3711.
- A.A. Sharaf, H.O. Bakodah, A Good Spatial Discretisation in the Method of Lines, Appl. Math. Comput. 171 (2005), 1253–1263. https://doi.org/10.1016/j.amc.2005.01.144.
- A.M. Wazwaz, Partial Differential Equations and Solitary Waves Theory, Springer, 2010.
- R. Abazari, A. Borhanifar, Numerical Study of the Solution of the Burgers and Coupled Burgers Equations by a Differential Transformation Method, Comput. Math. Appl. 59 (2010), 2711–2722. https://doi.org/10.1016/j.camwa.2010.01.039.
- B. Hosseini, R. Hashemi, Solution of Burgers’ Equation Using a Local-RBF Meshless Method, Int. J. Comput. Methods Eng. Sci. Mech. 12 (2011), 44–58. https://doi.org/10.1080/15502287.2010.540303.
- I.A. Ganaie, V.K. Kukreja, Numerical Solution of Burgers’ Equation by Cubic Hermite Collocation Method, Appl. Math. Comput. 237 (2014), 571–581. https://doi.org/10.1016/j.amc.2014.03.102.
- L. Shao, X. Feng, Y. He, The Local Discontinuous Galerkin Finite Element Method for Burger’s Equation, Math. Comput. Model. 54 (2011), 2943–2954. https://doi.org/10.1016/j.mcm.2011.07.016.
- M. Abdullah, M. Yaseen, M. De La Sen, Numerical Simulation of the Coupled Viscous Burgers Equation Using the Hermite Formula and Cubic B-Spline Basis Functions, Phys. Scr. 95 (2020), 115216. https://doi.org/10.1088/1402-4896/abbf1f.
- Y. Cicek, N. Gucuyenen Kaymak, E. Bahar, G. Gurarslan, G. Tangolu, A New Numerical Algorithm Based on Quintic B-Spline and Adaptive Time Integrator for Coupled Burgers Equation, Comput. Methods Differ. Equ. 11 (2023), 130-142. https://doi.org/10.22034/cmde.2022.50940.2121.
- A.H. Khater, R.S. Temsah, M.M. Hassan, A Chebyshev Spectral Collocation Method for Solving Burgers’-Type Equations, J. Comput. Appl. Math. 222 (2008), 333–350. https://doi.org/10.1016/j.cam.2007.11.007.
- A. Rashid, M. Abbas, A.I.Md. Ismail, A.A. Majid, Numerical Solution of the Coupled Viscous Burgers Equations by Chebyshev–Legendre Pseudo-Spectral Method, Appl. Math. Comput. 245 (2014), 372–381. https://doi.org/10.1016/j.amc.2014.07.067.
- R.C. Mittal, R. Jiwari, A Differential Quadrature Method for Numerical Solutions of Burgers’-type Equations, Int. J. Numer. Methods Heat Fluid Flow 22 (2012), 880–895. https://doi.org/10.1108/09615531211255761.
- V. Mukundan, A. Awasthi, Linearized Implicit Numerical Method for Burgers’ Equation, Nonlinear Eng. 5 (2016), 219-234. https://doi.org/10.1515/nleng-2016-0031.
- G. Adomian, Solving Frontier Problems of Physics: The Decomposition Method, Springer, 2013.
- G. Adomian, A Review of the Decomposition Method in Applied Mathematics, J. Math. Anal. Appl. 135 (1988), 501–544. https://doi.org/10.1016/0022-247X(88)90170-9.
- A.M. Wazwaz, The Decomposition Method for Solving the Diffusion Equation Subject to the Specification of Mass, Int. J. Appl. Math. 3 (2000), 25-34.
- A. Bratsos, M. Ehrhardt, I.Th. Famelis, A Discrete Adomian Decomposition Method for Discrete Nonlinear Schrödinger Equations, Appl. Math. Comput. 197 (2008), 190–205. https://doi.org/10.1016/j.amc.2007.07.055.
- Q. Wang, Numerical Solutions for Fractional KdV–Burgers Equation by Adomian Decomposition Method, Appl. Math. Comput. 182 (2006), 1048–1055. https://doi.org/10.1016/j.amc.2006.05.004.
- D. Zeidan, C.K. Chau, T. Lu, W. Zheng, Mathematical Studies of the Solution of Burgers’ Equations by Adomian Decomposition Method, Math. Methods Appl. Sci. 43 (2020), 2171–2188. https://doi.org/10.1002/mma.5982.
- G. Adomian, A New Approach to Nonlinear Partial Differential Equations, J. Math. Anal. Appl. 102 (1984), 420–434. https://doi.org/10.1016/0022-247X(84)90182-3.
- G. Adomian, R. Rach, Equality of Partial Solutions in the Decomposition Method for Linear or Nonlinear Partial Differential Equations, Comput. Math. Appl. 19 (1990), 9–12. https://doi.org/10.1016/0898-1221(90)90246-G.
- D.J. Evans, K.R. Raslan, The Adomian Decomposition Method for Solving Delay Differential Equation, Int. J. Comput. Math. 82 (2005), 49–54. https://doi.org/10.1080/00207160412331286815.
- A.-M. Wazwaz, Adomian Decomposition Method for a Reliable Treatment of the Bratu-Type Equations, Appl. Math. Comput. 166 (2005), 652–663. https://doi.org/10.1016/j.amc.2004.06.059.
- A.-M. Wazwaz, A Reliable Modification of Adomian Decomposition Method, Appl. Math. Comput. 102 (1999), 77–86. https://doi.org/10.1016/S0096-3003(98)10024-3.
- A.-M. Wazwaz, A New Algorithm for Calculating Adomian Polynomials for Nonlinear Operators, Appl. Math. Comput. 111 (2000), 33–51. https://doi.org/10.1016/S0096-3003(99)00063-6.
- J. Biazar, E. Babolian, G. Kember, A. Nouri, R. Islam, An Alternate Algorithm for Computing Adomian Polynomials in Special Cases, Appl. Math. Comput. 138 (2003), 523–529. https://doi.org/10.1016/S0096-3003(02)00174-1.
- D. Kaya, An Explicit Solution of Coupled Viscous Burgers’ Equation by the Decomposition Method, Int. J. Math. Math. Sci. 27 (2001), 675–680. https://doi.org/10.1155/S0161171201010249.
- V.K. Srivastava, M. Tamsir, M.K. Awasthi, S. Singh, One-Dimensional Coupled Burgers’ Equation and Its Numerical Solution by an Implicit Logarithmic Finite-Difference Method, AIP Adv. 4 (2014), 037119. https://doi.org/10.1063/1.4869637.
- R.C. Mittal, G. Arora, Numerical Solution of the Coupled Viscous Burgers’ Equation, Commun. Nonlinear Sci. Numer. Simul. 16 (2011), 1304–1313. https://doi.org/10.1016/j.cnsns.2010.06.028.
- F. Bulut, A. Esen, Ö. Oruç, Chebyshev Wavelet Method for Numerical Solutions of Coupled Burgers Equation, Hacettepe J. Math. Stat. 48 (2018), 1-16. https://doi.org/10.15672/HJMS.2018.642.
- A.A. Soliman, The Modified Extended Tanh-Function Method for Solving Burgers-Type Equations, Physica A: Stat. Mech. Appl. 361 (2006), 394–404. https://doi.org/10.1016/j.physa.2005.07.008.
- W.L. Wood, An Exact Solution for Burger’s Equation, Commun. Numer. Methods Eng. 22 (2006), 797–798. https://doi.org/10.1002/cnm.850.