Robin Boundary Value Problems With Natural Growth Term in Variable Exponent Space
Main Article Content
Abstract
The main purpose of this paper is to investigate a nonlinear elliptic problem with a natural growth term under Robin boundary conditions. Using approximation techniques and surjectivity criteria of an operator mapping from a Banach space into its dual, we prove the existence of a sequence of weakly approximated solutions and take its limit to establish the existence of a renormalized or entropy solution for the initial problem.
Article Details
References
- Y. Akdim, C. Allalou, N. El Gorch, Existence of Renormalized Solutions for Nonlinear Elliptic Problems in Weighted Variable-Exponent Space with L 1 -Data, Gulf J. Math. 6 (2018), 151–165. https://doi.org/10.56947/gjom.v6i4.254.
- Y. Akdim, C. Allalou, Existence of Renormalized Solutions of Nonlinear Elliptic Problems in Weighted VariableExponent Space, J. Math. Stud. 48 (2015), 375–397. https://doi.org/10.4208/jms.v48n4.15.05.
- Y.A. Youssef Akdim, M.O. Morad Ouboufettal, Existence of Solution for a General Class of Strongly Nonlinear Elliptic Problems Having Natural Growth Terms and L 1 -Data, Anal. Theory Appl. 39 (2023), 53–68. https://doi.org/10.4208/ata.OA-2020-0049.
- F. Andreu, N. Igbida, J.M. Mazón, J. Toledo, L 1 Existence and Uniqueness Results for Quasi-Linear Elliptic Equations with Nonlinear Boundary Conditions, Ann. Inst. Henri Poincaré C Anal. Non Linéaire 24 (2007), 61–89. https://doi.org/10.1016/j.anihpc.2005.09.009.
- F. Andreu, J.M. Mazon, S.S. de Léon, J. Toledo, Quasi-Linear Elliptic and Parabolic Equations in L 1 With Nonlinear Boundary Conditions, Adv. Math. Sci. Appl. 7 (1997), 183-213.
- S.N. Antontsev, J.F. Rodrigues, On Stationary Thermo-Rheological Viscous Flows, Ann. Univ. Ferrara 52 (2006), 19–36. https://doi.org/10.1007/s11565-006-0002-9.
- E. Azroul, H. Hjiaj, A. Touzani, Existence and Regularity of Entropy Solutions for Strongly Nonlinear p(x)-Elliptic Equations, Electron. J. Differ. Equ. 2013 (2013), 68.
- E. Azroul, M.B. Benboubker, R. Bouzyani, H. Chrayteh, Renormalized Solutions for Some Nonlinear Nonhomogeneous Elliptic Problems with Neumann Boundary Conditions and Right Hand Side Measure, Bol. Soc. Paran. Mat. 39 (2021), 81–103. https://doi.org/10.5269/bspm.41896.
- M.B. Benboubker, E. Azroul, A. Barbara, Quasilinear Elliptic Problems with Nonstandard Growth, Electron. J. Differ. Equ. 2011 (2011), 62.
- P. Bénilan, L. Boccardo, T. Gallouët, et al. An L1-Theory of Existence and Uniqueness of Solutions of Nonlinear Elliptic Equations, Ann. Scuola Norm. Super. Pisa – Cl. Sci., Ser. 4, 22 (1995), 241-272.
- F. Murat, A. Bensoussan, L. Boccardo, On a Non Linear Partial Differential Equation Having Natural Growth Terms and Unbounded Solution, Ann. Inst. Henri Poincaré C, Anal. Non Lin. 5 (1988), 347–364. https://doi.org/10.1016/s0294-1449(16)30342-0.
- B.K. Bonzi, I. Nyanquini, S. Ouar, Existence and Uniqueness of Weak Solution and Entropy Solutions for Homogeneous Neumann Boundary-Value Problems Involving Variable Exponents, Electron. J. Differ. Equ. 2012 (2012), 12.
- L. Boccardo, F. Murat, J.P. Puel, Existence of Bounded Solutions for Non Linear Elliptic Unilateral Problems, Ann. Mat. Pura Appl. 152 (1988), 183–196. https://doi.org/10.1007/BF01766148.
- L. Boccardo, T. Gallouët, F. Murat, A Unified Presentation of Two Existence Results for Problems with Natural Growth, in: Progress in Partial Differential Equations, The Metz Surveys, 2 (1992), Pitman Research Notes in Mathematics Series, vol. 296, pp. 127–137, Longman Scientific and Technical, Harlow (1993).
- L. Boccardo, T. Gallouet, Strongly Nonlinear Elliptic Equations Having Natural Growth Terms and L 1 Data, Nonlin. Anal.: Theory Methods Appl. 19 (1992), 573–579. https://doi.org/10.1016/0362-546X(92)90022-7.
- I. Boccardo, T. Gallouet, Nonlinear Elliptic Equations with Right Hand Side Measures, Commun. Partial Differ. Equ. 17 (1992), 189–258. https://doi.org/10.1080/03605309208820857.
- H. Brezis, Opérateurs Maximaux Monotones et Semigroupes de Contraction dans les Espaces de Hilbert, North Holland, Amsterdam, 1973.
- Y. Chen, S. Levine, M. Rao, Variable Exponent, Linear Growth Functionals in Image Restoration, SIAM J. Appl. Math. 66 (2006), 1383–1406. https://doi.org/10.1137/050624522.
- M.C.H. Moulay Cherif Hassib, Y.A. Youssef Akdim, E.A. Elhoussine Azroul, A.B. Abdelkrim Barbara, Existence and Regularity of Solution for Strongly Nonlinear p(x)-Elliptic Equation with Measure Data, J. Partial Differ. Equ. 30 (2017), 31–46. https://doi.org/10.4208/jpde.v30.n1.3.
- L. Diening, Theoretical and Numerical Results for Electrorheological Fluids, PhD Thesis, University of Frieburg, Germany, 2002.
- R.J. DiPerna, P.L. Lions, On the Cauchy Problem for Boltzmann Equations: Global Existence and Weak Stability, Ann. Math. 130 (1989), 321–366. https://doi.org/10.2307/1971423.
- X. Fan, Anisotropic Variable Exponent Sobolev Spaces and p(x)-Laplacian Equations, Complex Var. Elliptic Equ. 56 (2011), 623–642. https://doi.org/10.1080/17476931003728412.
- X. Fan, D. Zhao, On the Spaces L p(x) (Ω) and W1,p(x) (Ω), J. Math. Anal. Appl. 263 (2001), 424–446. https://doi.org/10.1006/jmaa.2000.7617.
- X. Fan, D. Zhao, On the Generalized Orlicz-Sobolev Space Wk,p(x) (Ω), J. Gansu Educ. Coll. 12 (1998), 1–6.
- P. Gwiazda, A. Swierczewska-Gwiazda, A. Wróblewska, Monotonicity Methods in Generalized Orlicz Spaces for ´ a Class of Non-Newtonian Fluids, Math. Methods Appl. Sci. 33 (2010), 125–137. https://doi.org/10.1002/mma.1155.
- P. Gwiazda, P. Wittbold, A. Wróblewska, A. Zimmermann, Renormalized Solutions of Nonlinear Elliptic Problems in Generalized Orlicz Spaces, J. Differ. Equ. 253 (2012), 635–666. https://doi.org/10.1016/j.jde.2012.03.025.
- P. Harjulehto, P. Hästö, Sobolev Inequalities for Variable Exponents Attaining the Values 1 and n, Publ. Mat. 52 (2008), 347–363. https://doi.org/10.5565/PUBLMAT_52208_05.
- I. Konate, I. Idrissa, S. Ouaro, Nonlinear Problem Having Natural Growth Term and Measure Data, An. Univ. Oradea Fasc. Mat. 31 (2024), 85–113.
- O. Kovácik, J. Rákosník, On Spaces Lp(x) and Wk,p(x), Czechoslovak Math. J. 41 (1991), 592–618. https://doi.org/10.21136/CMJ.1991.102493.
- J. Leray, J.L. Lions, Quelques Résultats de Višik Sur Les Problèmes Elliptiques Non Linéaires Par Les Méthodes de Minty-Browder, Bull. Soc. Math. France 79 (1965), 97–107. https://doi.org/10.24033/bsmf.1617.
- D. Motreanu, A. Sciammetta, E. Tornatore, A Sub-Supersolution Approach for Neumann Boundary Value Problems with Gradient Dependence, Nonlinear Anal.: Real World Appl. 54 (2020), 103096. https://doi.org/10.1016/j.nonrwa.2020.103096.
- I. Nyanquini, S. Ouaro, S. Safimba, Entropy Solution to Nonlinear Multivalued Elliptic Problem With Variable Exponents and Measure Data, Ann. Univ. Craiova - Math. Comput. Sci. Ser. 40 (2013), 174–198.
- I. Nyanquini, S. Ouaro, Entropy Solution for Nonlinear Elliptic Problem Involving Variable Exponent and Fourier Type Boundary Condition, Afr. Mat. 23 (2012), 205–228. https://doi.org/10.1007/s13370-011-0030-1.
- S. Ouaro, A. Ouédraogo, S. Soma, Multivalued Homogeneous Neumann Problem Involving Diffuse Measure Data and Variable Exponent, Nonlinear Dyn. Syst. Theory, 16 (2016), 102–114.
- O. Stanislas, L 1 Existence and Uniqueness of Entropy Solutions to Nonlinear Multivalued Elliptic Equations with Homogeneous Neumann Boundary Condition and Variable Exponent, J. Partial Differ. Equ. 27 (2014), 1–27. https://doi.org/10.4208/jpde.v27.n1.1.
- S. Ouaro, A. Ouedraogo, S. Soma, Multivalued Problem with Robin Boundary Condition Involving Diffuse Measure Data and Variable Exponent, Adv. Nonlinear Anal. 3 (2014), 209–235. https://doi.org/10.1515/anona-2014-0010.
- S. Ouaro, N. Sawadogo, Structural Stability of Nonlinear Elliptic p(u)-Laplacian Problem with Robin Type Boundary Condition, in: G.M. N’Guérékata, B. Toni (Eds.), Studies in Evolution Equations and Related Topics, Springer, Cham, 2021: pp. 69–111. https://doi.org/10.1007/978-3-030-77704-3_5.
- S. Ouaro, A. Tchousso, Well-Posedness Result for a Nonlinear Elliptic Problem Involving Variable Exponent and Robin Type Boundary Condition, Afr. Diaspora J. Math. (N.S.) 11 (2011), 36-64.
- A. Prignet, Conditions aux Limites Non Homogènes pour des Problèmes Elliptiques avec Second Membre Mesure, Ann. Fac. Sci. Toulouse 6 (1997), 297–318. http://www.numdam.org/item?id=AFST_1997_6_6_2_297_0.
- K.R. Rajagopal, M. Ruzicka, Mathematical Modeling of Electrorheological Materials, Continuum Mech. Thermodyn. 13 (2001), 59–78. https://doi.org/10.1007/s001610100034.
- M. Ružiˇcka, Electrorheological Fluids: Modeling and Mathematical Theory, Springer, Berlin, Heidelberg, 2000. https://doi.org/10.1007/BFb0104029.
- S. Ouaro, N. Sawadogo, Nonlinear Multivalued Homogeneous Robin Boundary p(u)-Laplacian Problem, Ann. Math. Comput. Sci. 24 (2024), 57–84. https://doi.org/10.56947/amcs.v24.308.
- L.-L. Wang, Y.-H. Fan, W.-G. Ge, Existence and Multiplicity of Solutions for a Neumann Problem Involving the p(x)-Laplace Operator, Nonlinear Anal.: Theory Methods Appl. 71 (2009), 4259–4270. https://doi.org/10.1016/j.na.2009.02.116.
- J. Yao, Solutions for Neumann Boundary Value Problems Involving p(x)-Laplace Operators, Nonlinear Anal.: Theory Methods Appl. 68 (2008), 1271–1283. https://doi.org/10.1016/j.na.2006.12.020.
- C. Yazough, E. Azroul, H. Redwane, Existence of Solutions for Some Nonlinear Elliptic Unilateral Problems with Measure Data, Electron. J. Qual. Theory Differ. Equ. 2013 (2013), 43.