Neutrosophic Run Test for Randomness in Imprecise Data with Application
Main Article Content
Abstract
The statistical tests have been applied under the assumption that the observations in the sample should be random. The existing run test for randomness is applied when no uncertainty is presented. In practice, when implementing the test, the uncertainty is always present and should be evaluated in implementing the statistical tests. In this paper, the modification of the existing run test for randomness is presented using the idea of neutrosophic statistics. The proposed neutrosophic run test for randomness will be applied when the decision-makers are uncertain about the level of significance, observations, and sample size. The application of the proposed test will be given using the data of women with HIV/AIDS. From HIV/AIDS Data, it is concluded that the presence of indeterminacy may affect the decision about the null hypothesis.
Article Details
References
- G.K. Kanji, 100 Statistical Tests, Sage, 2006.
- M. Dakhilalian, E.M. Jazi, M.J. Taghiyar, Analysis of Randomness of Runs and Its Application for Statistical Tests, Int. J. Comput. Sci. Netw. Secur. 9 (2009), 83-90.
- D. Paindaveine, On Multivariate Runs Tests for Randomness, J. Amer. Stat. Assoc. 104 (2009), 1525–1538. https://doi.org/10.1198/jasa.2009.tm09047.
- A. Doğanaksoy, F. Sulak, M. Uğuz, O. Şeker, Z. Akcengiz, New Statistical Randomness Tests Based on Length of Runs, Math. Probl. Eng. 2015 (2015), 626408. https://doi.org/10.1155/2015/626408.
- H. Haramoto, Automation of Statistical Tests on Randomness to Obtain Clearer Conclusion, in: P. L’ Ecuyer, A.B. Owen (Eds.), Monte Carlo and Quasi-Monte Carlo Methods 2008, Springer, Berlin, Heidelberg, 2009: pp. 411–421. https://doi.org/10.1007/978-3-642-04107-5_26.
- D. Petros Kelkile, Statistical Analysis of Adult HIV/AIDS Patients and Modelling of AIDS Disease Progression, Sci. J. Appl. Math. Stat. 4 (2016), 189. https://doi.org/10.11648/j.sjams.20160405.12.
- M.A. Bujang, F.E. Sapri, An Application of the Runs Test to Test for Randomness of Observations Obtained from a Clinical Survey in an Ordered Population, Malays. J. Med. Sci. 25 (2018), 146–151. https://doi.org/10.21315/mjms2018.25.4.15.
- L.C. Meiser, J. Koch, P.L. Antkowiak, et al. DNA Synthesis for True Random Number Generation, Nature Commun. 11 (2020), 5869. https://doi.org/10.1038/s41467-020-19757-y.
- D. Dargasso Danna, Statistical Analysis on Correlates of HIV Testing Outcomes Based on Ethiopia Demographic and Health Survey (EDHS) 2011 Data, Sci. J. Public Health 6 (2018), 120. https://doi.org/10.11648/j.sjph.20180605.11.
- P.I. Adamu, P.E. Oguntunde, H.I. Okagbue, O.O. Agboola, On the Epidemiology and Statistical Analysis of HIV/AIDS Patients in the Insurgency Affected States of Nigeria, Open Access Maced. J. Med. Sci. 6 (2018), 1315–1321. https://doi.org/10.3889/oamjms.2018.229.
- V.W. Berger, L.J. Bour, K. Carter, et al. A Roadmap to Using Randomization in Clinical Trials, BMC Med. Res. Methodol. 21 (2021), 168. https://doi.org/10.1186/s12874-021-01303-z.
- E. García-Berthou, C. Alcaraz, Incongruence between Test Statistics and P Values in Medical Papers, BMC Med. Res. Methodol. 4 (2004), 13. https://doi.org/10.1186/1471-2288-4-13.
- Z. Ali, Sb. Bhaskar, Basic Statistical Tools in Research and Data Analysis, Indian J. Anaesth. 60 (2016), 662. https://doi.org/10.4103/0019-5049.190623.
- S. Greenland, S.J. Senn, K.J. Rothman, et al. Statistical Tests, P Values, Confidence Intervals, and Power: A Guide to Misinterpretations, Eur. J. Epidemiol. 31 (2016), 337–350. https://doi.org/10.1007/s10654-016-0149-3.
- J. In, S. Lee, Statistical Data Presentation, Korean J. Anesthesiol. 70 (2017), 267-276. https://doi.org/10.4097/kjae.2017.70.3.267.
- X. Yang, J. Sun, R.C. Patel, et al. Associations between HIV Infection and Clinical Spectrum of COVID-19: A Population Level Analysis Based on US National COVID Cohort Collaborative (N3C) Data, The Lancet HIV 8 (2021), e690–e700. https://doi.org/10.1016/S2352-3018(21)00239-3.
- R. Viertl, Univariate Statistical Analysis with Fuzzy Data, Comput. Stat. Data Anal. 51 (2006), 133–147. https://doi.org/10.1016/j.csda.2006.04.002.
- P. Filzmoser, R. Viertl, Testing Hypotheses with Fuzzy Data: The Fuzzy p-Value, Metrika 59 (2004), 21–29. https://doi.org/10.1007/s001840300269.
- C.-C. Tsai, C.-C. Chen, Tests of Quality Characteristics of Two Populations Using Paired Fuzzy Sample Differences, Int. J. Adv. Manuf. Technol. 27 (2006), 574–579. https://doi.org/10.1007/s00170-004-2212-6.
- S.M. Taheri, M. Arefi, Testing Fuzzy Hypotheses Based on Fuzzy Test Statistic, Soft Comput. 13 (2009), 617–625. https://doi.org/10.1007/s00500-008-0339-3.
- E.B. Jamkhaneh, A.N. Ghara, Testing Statistical Hypotheses with Fuzzy Data, in: 2010 International Conference on Intelligent Computing and Cognitive Informatics, IEEE, Kuala Lumpur, Malaysia, 2010: pp. 86–89. https://doi.org/10.1109/ICICCI.2010.56.
- J. Chachi, S.M. Taheri, R. Viertl, Testing Statistical Hypotheses Based on Fuzzy Confidence Intervals, Austrian J. Stat. 41 (2016), 267–286. https://doi.org/10.17713/ajs.v41i4.168.
- D. Kalpanapriya, P. Pandian, Statistical Hypotheses Testing with Imprecise Data, Appl. Math. Sci. 6 (2012), 5285-5292.
- S. Parthiban, P. Gajivaradhan, A Comparative Study of Two-Sample t-Test Under Fuzzy Environments Using Trapezoidal Fuzzy Numbers, Int. J. Math. Stat. Invent. 4 (2016), 39-54.
- M. Montenegro, Two-Sample Hypothesis Tests of Means of a Fuzzy Random Variable, Inf. Sci. 133 (2001), 89–100. https://doi.org/10.1016/S0020-0255(01)00078-0.
- S. Park, S.-J. Lee, S. Jun, Patent Big Data Analysis Using Fuzzy Learning, Int. J. Fuzzy Syst. 19 (2017), 1158–1167. https://doi.org/10.1007/s40815-016-0192-y.
- H. Garg, R. Arora, Generalized Maclaurin Symmetric Mean Aggregation Operators Based on Archimedean T-Norm of the Intuitionistic Fuzzy Soft Set Information, Artif. Intell. Rev. 54 (2021), 3173–3213. https://doi.org/10.1007/s10462-020-09925-3.
- F. Smarandache, Neutrosophy. Neutrosophic Probability, Set, and Logic, ProQuest Information & Learning, Ann Arbor, Michigan, 1998.
- S.K. Das, S. Edalatpanah, A New Ranking Function of Triangular Neutrosophic Number and Its Application in Integer Programming, Int. J. Neutrosoph. Sci. 4 (2020), 82-92. https://doi.org/10.54216/IJNS.040202.
- O. G. El Barbary, R. Abu Gdairi, Neutrosophic Logic-Based Document Summarization, J. Math. 2021 (2021), 9938693. https://doi.org/10.1155/2021/9938693.
- F. Smarandache, Introduction to Neutrosophic Statistics, Sitech & Education Publishing, 2014.
- J. Chen, J. Ye, S. Du, Scale Effect and Anisotropy Analyzed for Neutrosophic Numbers of Rock Joint Roughness Coefficient Based on Neutrosophic Statistics, Symmetry 9 (2017), 208. https://doi.org/10.3390/sym9100208.
- J. Chen, J. Ye, S. Du, R. Yong, Expressions of Rock Joint Roughness Coefficient Using Neutrosophic Interval Statistical Numbers, Symmetry 9 (2017), 123. https://doi.org/10.3390/sym9070123.
- R.A.K. Sherwani, H. Shakeel, M. Saleem, et al. A New Neutrosophic Sign Test: An Application to COVID-19 Data, PLOS ONE 16 (2021), e0255671. https://doi.org/10.1371/journal.pone.0255671.
- M. Aslam, Neutrosophic Statistical Test for Counts in Climatology, Sci. Rep. 11 (2021), 17806. https://doi.org/10.1038/s41598-021-97344-x.
- M. Albassam, N. Khan, M. Aslam, Neutrosophic D’Agostino Test of Normality: An Application to Water Data, J. Math. 2021 (2021), 5582102. https://doi.org/10.1155/2021/5582102.
- M. Aslam, The Neutrosophic Negative Binomial Distribution: Algorithms and Practical Application, REVSTAT-Stat. J. in Press.
- M. Aslam, Bayes Estimator Under Neutrosophic Statistics: A Robust Approach for Handling Uncertainty and Imprecise Data, Methodol. Comput. Appl. Probab. 26 (2024), 56. https://doi.org/10.1007/s11009-024-10126-6.
- W.B.V. Kandasamy, F. Smarandache, Fuzzy and Neutrosophic Analysis of Women with HIV/AIDS, arXiv:math/0507037 [math.GM] (2005). https://doi.org/10.48550/arXiv.math/0507037.