Some Generalized Fuzzy Separation Axioms
Main Article Content
Abstract
This article's objective is to progress the field of generalized fuzzy topological spaces, particularly generalized fuzzy T0 spaces. Various types of these spaces are introduced and examined. We investigate their hereditary, productive, and projective properties, and demonstrate that these properties are preserved under bijective generalized fuzzy continuous generalized fuzzy open mappings. Additionally, we explore these concepts in the context of initial and final generalized fuzzy topological spaces.
Article Details
References
- M. Amin, D. Ali, M. Hossain, On T0 Fuzzy Bitopological Spaces, J. Bangladesh Acad. Sci. 38 (2014), 209–217. https://doi.org/10.3329/jbas.v38i2.21345.
- T. Babitha, M.R. Sitrarasu, Operations in Generalized Fuzzy Topological Spaces, Int. J.Contemp. Math. Sci. 44 (2010), 2149-2155.
- T. Babitha, D. Sivaraj, M.R. Sitrarasu, On Generalized Fuzzy Topology, J. Adv. Res. Pure. Math. 2 (2010), 54-61.
- R. Bellman, M. Giertz, On the Analytic Formalism of the Theory of Fuzzy Sets, Inf. Sci. 5 (1973), 149–156. https://doi.org/10.1016/0020-0255(73)90009-1.
- J.C. Bezdek, Cluster Validity with Fuzzy Sets, J. Cybern. 3 (1973), 58–73. https://doi.org/10.1080/01969727308546047.
- Á. Császár, Generalized Topology, Generalized Continuity, Acta Math. Hung. 96 (2002), 351–357. https://doi.org/10.1023/A:1019713018007.
- M.K. Chakraborty, T.M.G. Ahsanullah, Fuzzy Topology on Fuzzy Sets and Tolerance Topology, Fuzzy Sets Syst. 45 (1992), 103–108. https://doi.org/10.1016/0165-0114(92)90096-M.
- J. Chakraborty, B. Bhattacharya, A. Paul, Generalized Fuzzy Closed Sets in Generalized Fuzzy Topological Spaces, Songklanakarin J. Sci. Technol. 41 (2019), 216-221.
- C.L. Chang, Fuzzy Topological Spaces, J. Math. Anal. Appl. 24 (1968), 182–190. https://doi.org/10.1016/0022-247X(68)90057-7.
- G.P. Chetty, Generalized Fuzzy Topology, Ital. J. Pure Appl. Math. 24 (2008), 91-96.
- B. Das, J. Chakraborty, B. Bhattacharya, On Fuzzy γµ - Open Sets in Generalized Fuzzy Topological Spaces, Proyecciones J. Math. 41 (2022), 733-749. https://doi.org/10.22199/issn.0717-6279-4784.
- M.H. Ghanim, E.E. Kerre, A.S. Mashhour, Separation Axioms, Subspaces and Sums in Fuzzy Topology, J. Math. Anal. Appl. 102 (1984), 189–202. https://doi.org/10.1016/0022-247X(84)90212-9.
- J.A. Goguen, L-Fuzzy Sets, J. Math. Anal. Appl. 18 (1967), 145–174. https://doi.org/10.1016/0022-247X(67)90189-8.
- D. Mandal, M.N. Mukeorjee, Some Classes of Fuzzy Sets in a Generalized Fuzzy Topological Spaces and Certain Unifications, Ann. Fuzzy Math. Inf. 7 (2014), 949-957.
- S.S. Miah, M.R. Amin, M. Jahan, Mappings on Fuzzy T0 Topological Spaces in Quasi-Coincidence Sense, J. Math. Comput. Sci. 7 (2017), 883-894. https://doi.org/10.28919/jmcs/3425.
- P. Pao-Ming, L. Ying-Ming, Fuzzy Topology. I. Neighborhood Structure of a Fuzzy Point and Moore-Smith Convergence, J. Math. Anal. Appl. 76 (1980), 571–599. https://doi.org/10.1016/0022-247X(80)90048-7.
- H. Cheng-Ming, Fuzzy Topological Spaces, J. Math. Anal. Appl. 110 (1985), 141-178.
- W. Rudin, Real and Complex Analysis, McGraw-Hill, 1966.
- S. Sa ˘gıro ˘glu, E. Güner, E. Koçyi ˘git, Generalized Neighbourhood Systems of Fuzzy Points, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 62 (2013), 67–74. https://doi.org/10.1501/Commua1_0000000699.
- R. Sarma, A. Sharfuddin, A. Bhargava, Separation Axioms for Generalized Fuzzy Topologies, J. Combin. Inform. System Sci. 35 (2010), 329-340.
- R. Srivastava, S.N. Lal, A.K. Srivastava, On Fuzzy T0 and R0 Topological Spaces, J. Math. Anal. Appl. 136 (1988), 66–73. https://doi.org/10.1016/0022-247X(88)90116-3.
- P. Wuyts, R. Lowen, On Separation Axioms in Fuzzy Topological Spaces, Fuzzy Neighborhood Spaces, and Fuzzy Uniform Spaces, J. Math. Anal. Appl. 93 (1983), 27–41. https://doi.org/10.1016/0022-247X(83)90217-2.
- T.H. Yalvaç, Fuzzy Sets and Functions on Fuzzy Spaces, J. Math. Anal. Appl. 126 (1987), 409–423. https://doi.org/10.1016/0022-247X(87)90050-3.
- L.A. Zadeh, Fuzzy Sets, Inf. Control 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X.
- L.A. Zadeh, A Fuzzy-Set-Theoretic Interpretation of Linguistic Hedges, J. Cybern. 2 (1972), 4–34. https://doi.org/10.1080/01969727208542910.
- I. Zahan, R. Nasrin, An Introduction to Fuzzy Topological Spaces, Adv. Pure Math. 11 (2021), 483–501. https://doi.org/10.4236/apm.2021.115034.