Mathematical Analysis for the Behavior of the HIV Dynamics in a Periodic Environment
Main Article Content
Abstract
In this paper, we propose and study an HIV dynamics model that considers three ways of infection, as well as general transmission and neutralization rates in a periodic environment. The model accounts for both latently and productively infected cells. General nonlinear functions are given for the incident rates of infection and the neutralization rates of infected cells and viruses. The basic infection reproduction number, which is the spectral radius of an integral operator, determines the model’s global dynamics. We have analyzed the model’s asymptotic stability as the value of the basic reproduction number approaches unity. The numerical simulations carried out across three different scenarios support the findings of the theoretical investigation.
Article Details
References
- N.C. Grassly, C. Fraser, Mathematical Models of Infectious Disease Transmission, Nat. Rev. Microbiol. 6 (2008), 477–487. https://doi.org/10.1038/nrmicro1845.
- F. Brauer, C. Castillo-Chavez, A. Mubayi, S. Towers, Some Models for Epidemics of Vector-Transmitted Diseases, Infect. Dis. Model. 1 (2016), 79–87. https://doi.org/10.1016/j.idm.2016.08.001.
- A. Sisk, N. Fefferman, A Network Theoretic Method for the Basic Reproductive Number for Infectious Diseases, Methods Ecol. Evol. 13 (2022), 2503–2515. https://doi.org/10.1111/2041-210X.13978.
- H.W. Hethcote, The Mathematics of Infectious Diseases, SIAM Rev. 42 (2000), 599–653. https://doi.org/10.1137/S0036144500371907.
- R.M. Anderson, R.M. May, Population Biology of Infectious Diseases: Part I, Nature 280 (1979), 361–367. https://doi.org/10.1038/280361a0.
- T.W. Chun, D. Finzi, J. Margolick, K. Chadwick, D. Schwartz, R.F. Siliciano, In Vivo Fate of HIV-1-Infected T Cells: Quantitative Analysis of the Transition to Stable Latency, Nat. Med. 1 (1995), 1284–1290. https://doi.org/10.1038/nm1295-1284.
- F. Sallusto, D. Lenig, R. Förster, M. Lipp, A. Lanzavecchia, Two Subsets of Memory T Lymphocytes with Distinct Homing Potentials and Effector Functions, Nature 401 (1999), 708–712. https://doi.org/10.1038/44385.
- L. Gattinoni, E. Lugli, Y. Ji, et al. A Human Memory T Cell Subset with Stem Cell–like Properties, Nat. Med. 17 (2011), 1290–1297. https://doi.org/10.1038/nm.2446.
- H. Abbey, An Examination of the Reed-Frost Theory of Epidemics, Human Biol. 24 (1952), 201.
- F. Kermack, D. McKendrick, A Contribution to the Mathematical Theory of Epidemics, Proc. R. Soc. Lond. Ser. A, 115 (1927), 700–721. https://doi.org/10.1098/rspa.1927.0118.
- W.H. Hamer, M. Cantab, F. Lond, The Milroy Lectures on Epidemic Disease in England–the Evidence of Variability and of Persistency of Type, The Lancet 167 (1906), 569–574. https://doi.org/10.1016/S0140-6736(01)80187-2.
- D.J. Daley, J. Gani, Epidemic Modelling: An Introduction, Cambridge University Press, 1999. https://doi.org/10.1017/CBO9780511608834.
- A.M. Elaiw, N.A. Almuallem, A. Hobiny, Effect of RTI Drug Efficacy on the HIV Dynamics with Two Cocirculating Target Cells, J. Comput. Anal. Appl. 23 (2017), 209–228.
- A.M. Elaiw, N.A. Almuallem, Global Dynamics of Delay-distributed HIV Infection Models with Differential Drug Efficacy in Cocirculating Target Cells, Math. Methods Appl. Sci. 39 (2016), 4–31. https://doi.org/10.1002/mma.3453.
- A. Elaiw, Nada. Almuallem, X.Wang, Global Analysis of an Extended HIV Dynamics Model with General Incidence Rate, J. Biol. Syst. 23 (2015), 401–421. https://doi.org/10.1142/S0218339015500217.
- A.M. Elaiw, N.A. Almuallem, Global Properties of Delayed-HIV Dynamics Models with Differential Drug Efficacy in Cocirculating Target Cells, Appl. Math. Comput. 265 (2015), 1067–1089. https://doi.org/10.1016/j.amc.2015.06.011.
- A.M. Elaiw, N.A. Almuallem, Global Properties for HIV Dynamics Models with Differential Drug Efficacy in Cocirculating Target Cells, J. Comput. Theor. Nanosci. 12 (2015), 3506–3515. https://doi.org/10.1166/jctn.2015.4231.
- S. Alsahafi, S. Woodcock, Exploring HIV Dynamics and an Optimal Control Strategy, Mathematics 10 (2022), 749. https://doi.org/10.3390/math10050749.
- M.E. Hajji, A.H. Albargi, et al. A Mathematical Investigation of an "SVEIR" Epidemic Model for the Measles Transmission, Math. Biosci. Eng. 19 (2022), 2853–2875. https://doi.org/10.3934/mbe.2022131.
- M. El Hajji, D.M. Alshaikh, N.A. Almuallem, Periodic Behaviour of an Epidemic in a Seasonal Environment with Vaccination, Mathematics 11 (2023), 2350. https://doi.org/10.3390/math11102350.
- A. Alshehri, M. El Hajji, Mathematical Study for Zika Virus Transmission with General Incidence Rate, AIMS Math. 7 (2022), 7117–7142. https://doi.org/10.3934/math.2022397.
- M.E. Hajji, M.F.S. Aloufi, M.H. Alharbi, Influence of Seasonality on Zika Virus Transmission, AIMS Math. 9 (2024), 19361–19384. https://doi.org/10.3934/math.2024943.
- M.A. Nowak, C.R.M. Bangham, Population Dynamics of Immune Responses to Persistent Viruses, Science 272 (1996), 74–79. https://doi.org/10.1126/science.272.5258.74.
- A.S. Perelson, A.U. Neumann, M. Markowitz, J.M. Leonard, D.D. Ho, HIV-1 Dynamics in Vivo: Virion Clearance Rate, Infected Cell Life-Span, and Viral Generation Time, Science 271 (1996), 1582–1586. https://doi.org/10.1126/science.271.5255.1582.
- M.A. Nowak, S. Bonhoeffer, G.M. Shaw, R.M. May, Anti-Viral Drug Treatment: Dynamics of Resistance in Free Virus and Infected Cell Populations, J. Theor. Biol. 184 (1997), 203–217. https://doi.org/10.1006/jtbi.1996.0307.
- A.S. Perelson, P. Essunger, Y. Cao, et al. Decay Characteristics of HIV-1-Infected Compartments during Combination Therapy, Nature 387 (1997), 188–191. https://doi.org/10.1038/387188a0.
- R.J. De Boer, A.S. Perelson, Target Cell Limited and Immune Control Models of HIV Infection: A Comparison, J. Theor. Biol. 190 (1998), 201–214. https://doi.org/10.1006/jtbi.1997.0548.
- D. Wodarz, A.L. Lloyd, V.A.A. Jansen, M.A. Nowak, Dynamics of Macrophage and T Cell Infection by HIV, J. Theor. Biol. 196 (1999), 101–113. https://doi.org/10.1006/jtbi.1998.0816.
- S. Bajaria, Predicting Differential Responses to Structured Treatment Interruptions during HAART, Bull. Math. Biol. 66 (2004), 1093–1118. https://doi.org/10.1016/j.bulm.2003.11.003.
- M. El Hajji, R.M. Alnjrani, Periodic Trajectories for HIV Dynamics in a Seasonal Environment With a General Incidence Rate, Int. J. Anal. Appl. 21 (2023), 96. https://doi.org/10.28924/2291-8639-21-2023-96.
- M. El Hajji, Periodic Solutions for Chikungunya Virus Dynamics in a Seasonal Environment with a General Incidence Rate, AIMS Math. 8 (2023), 24888–24913. https://doi.org/10.3934/math.20231269.
- M. El Hajji, Periodic Solutions for an "SVIQR" Epidemic Model in a Seasonal Environment with General Incidence Rate, Int. J. Biomath. (2024), 2450033. https://doi.org/10.1142/S1793524524500335.
- B.S. Alshammari, D.S. Mashat, F.O. Mallawi, Mathematical and Numerical Investigations for a Cholera Dynamics With a Seasonal Environment, Int. J. Anal. Appl. 21 (2023), 127. https://doi.org/10.28924/2291-8639-21-2023-127.
- H. Almuashi, Mathematical Analysis for the Influence of Seasonality on Chikungunya Virus Dynamics, Int. J. Anal. Appl. 22 (2024), 86. https://doi.org/10.28924/2291-8639-22-2024-86.
- F.A. Al Najim, Mathematical Analysis for a Zika Virus Dynamics in a Seasonal Environment, Int. J. Anal. Appl. 22 (2024), 71. https://doi.org/10.28924/2291-8639-22-2024-71.
- W. Wang, X.Q. Zhao, Threshold Dynamics for Compartmental Epidemic Models in Periodic Environments, J. Dyn. Differ. Equ. 20 (2008), 699–717. https://doi.org/10.1007/s10884-008-9111-8.
- Y. Nakata, T. Kuniya, Global Dynamics of a Class of SEIRS Epidemic Models in a Periodic Environment, J. Math. Anal. Appl. 363 (2010), 230–237. https://doi.org/10.1016/j.jmaa.2009.08.027.
- M. El Hajji, N.S. Alharbi, M.H. Alharbi, Mathematical Modeling for a CHIKV Transmission Under the Influence of Periodic Environment, Int. J. Anal. Appl. 22 (2024), 6. https://doi.org/10.28924/2291-8639-22-2024-6.
- M. El Hajji, F.A.S. Alzahrani, R. Mdimagh, Impact of Infection on Honeybee Population Dynamics in a Seasonal Environment, Int. J. Anal. Appl. 22 (2024), 75. https://doi.org/10.28924/2291-8639-22-2024-75.
- M. El Hajji, F.A.S. Alzahrani, M.H. Alharbi, Mathematical Analysis for Honeybee Dynamics Under the Influence of Seasonality, Mathematics 12 (2024), 3496. https://doi.org/10.3390/math12223496.
- M. El Hajji, R.M. Alnjrani, Periodic Behaviour of HIV Dynamics with Three Infection Routes, Mathematics 12 (2023), 123. https://doi.org/10.3390/math12010123.
- G. Frobenius, Uber Matrizen aus Nicht Negativen Elementen, Sitzungsberichte Preussische Akademie der Wissenschaft, Berlin, (1912). https://doi.org/10.3931/e-rara-18865.
- F. Zhang, X.Q. Zhao, A Periodic Epidemic Model in a Patchy Environment, J. Math. Anal. Appl. 325 (2007), 496–516. https://doi.org/10.1016/j.jmaa.2006.01.085.
- X.Q. Zhao, Dynamical Systems in Population Biology, Springer, New York, (2003).
- O. Diekmann, J.A.P. Heesterbeek, J.A.J. Metz, On the Definition and the Computation of the Basic Reproduction Ratio R0 in Models for Infectious Diseases in Heterogeneous Populations, J. Math. Biol. 28 (1990), 365–382. https://doi.org/10.1007/BF00178324.
- P. Van Den Driessche, J. Watmough, Reproduction Numbers and Sub-Threshold Endemic Equilibria for Compartmental Models of Disease Transmission, Math. Biosci. 180 (2002), 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6.