Applications of Borel Distribution and Mittag-Leffler Function on a Class of Bi-Univalent Functions
Main Article Content
Abstract
In this study, we present a novel class of bi-univalent functions that incorporates the Borel distribution and the Mittag-Leffler function within the open unit disk D. This is achieved by employing the q-analog of the hyperbolic tangent function in conjunction with the Hadamard product. The primary goal is determining the initial coefficient bounds for functions that fall within this newly defined class. Additionally, we explore the classical Fekete-Szegö functional problem as it pertains to these functions. Moreover, we highlight several known corollaries that arise from specific selections of the parameters associated with this class.
Article Details
References
- R.P. Agarwal, A Propos d’une Note de M. Pierre Humbert, C.R. Acad. Sci. Paris 236 (1953), 2031–2032.
- A. Alatawi, M. Darus, B. Alamri, Applications of Gegenbauer Polynomials for Subfamilies of Bi-Univalent Functions Involving a Borel Distribution-Type Mittag-Leffler Function, Symmetry 15 (2023), 785. https://doi.org/10.3390/sym15040785.
- W. Al-Rawashdeh, A Class of Non-Bazilevic Functions Subordinate to Gegenbauer Polynomials, Int. J. Anal. Appl. 22 (2024), 29. https://doi.org/10.28924/2291-8639-22-2024-29.
- W. Al-Rawashdeh, Applications of Gegenbauer Polynomials to a Certain Subclass of P-Valent Functions, WSEAS Trans. Math. 22 (2023), 1025–1030. https://doi.org/10.37394/23206.2023.22.111.
- W. Al-Rawashdeh, Horadam Polynomials and a Class of Biunivalent Functions Defined by Ruscheweyh Operator, Int. J. Math. Math. Sci. 2023 (2023), 2573044. https://doi.org/10.1155/2023/2573044.
- W. Al-Rawashdeh, On the Study of Bi-Univalent Functions Defined by the Generalized S ˘al ˘agean Differential Operator, Eur. J. Pure Appl. Math. 17 (2024), 3899–3914. https://doi.org/10.29020/nybg.ejpam.v17i4.5548.
- A. Aral, V. Gupta, R.P. Agarwal, Applications of q-Calculus in Operator Theory, Springer, New York, 2013.
- D. Bansal, J.K. Prajapat, Certain Geometric Properties of the Mittag-Leffler Functions, Complex Var. Elliptic Equ. 61 (2016), 338–350. https://doi.org/10.1080/17476933.2015.1079628.
- D.A. Brannan, J. Clunie, Aspects of Contemporary Complex Analysis, in: Proceedings of the NATO Advanced Study Institute, University of Durham, Durham, July 1–20, 1979, Academic Press, 1980. https://cir.nii.ac.jp/crid/1130000796405620224.
- M. Ça ˘glar, H. Orhan, M. Kamali, Fekete-Szegö Problem for a Subclass of Analytic Functions Associated with Chebyshev Polynomials, Bol. Soc. Parana. Mat. 40 (2022), 1–6. https://doi.org/10.5269/bspm.51024.
- J.H. Choi, Y.C. Kim, T. Sugawa, A General Approach to the Fekete-Szegö Problem, J. Math. Soc. Japan 59(2007), 707–727. https://doi.org/10.2969/jmsj/05930707.
- P. Duren, Univalent Functions, Springer, New York, 1983.
- P. Duren, Subordination in Complex Analysis, Springer, Berlin, 1977.
- M. Fekete, G. Szegö, Eine Bemerkung Über Ungerade Schlichte Funktionen, J. Lond. Math. Soc. s1-8 (1933), 85–89. https://doi.org/10.1112/jlms/s1-8.2.85.
- A.W. Goodman, Univalent Functions, Mariner Publ. Co, Tampa, 1983.
- M. Kamali, M. Caglar, E. Deniz, M. Turabaev, Fekete-Szegö Problem for a New Subclass of Analytic Functions Satisfyingsubordinate Condition Associated with Chebyshev Polynomials, Turk. J. Math. 45 (2021), 1195–1208. https://doi.org/10.3906/mat-2101-20.
- M. Kamarujjama, N.U. Khan, O. Khan, Fractional Calculus of Generalized P-k-Mittag-Leffler Function Using Marichev–Saigo–Maeda Operators, Arab J. Math. Sci. 25 (2019), 156–168. https://doi.org/10.1016/j.ajmsc.2019.05.003.
- F.R. Keogh, E.P. Merkes, A Coefficient Inequality for Certain Classes of Analytic Functions, Proc. Amer. Math. Soc. 20 (1969), 8–12. https://doi.org/10.1090/S0002-9939-1969-0232926-9.
- V. Kiryakova, The Multi-Index Mittag-Leffler Functions as an Important Class of Special Functions of Fractional Calculus, Comput. Math. Appl. 59 (2010), 1885–1895. https://doi.org/10.1016/j.camwa.2009.08.025.
- H.J. Haubold, A.M. Mathai, R.K. Saxena, Mittag-Leffler Functions and Their Applications, J. Appl. Math. 2011 (2011), 298628. https://doi.org/10.1155/2011/298628.
- P. Humbert, Quelques Resultants Retifs a la Fonction de Mittag-Leffler, C.R. Acad. Sci. 236 (1953), 1467–1468.
- P. Humbert, R.P. Agarwal, Sur la Fonction de Mittag-Leffler e Quelques-unes de Ses Généralisations. Bull. Sci. Math. 77 (1953), 180–185.
- A. Hussen, An Application of the Mittag-Leffler-Type Borel Distribution and Gegenbauer Polynomials on a Certain Subclass of Bi-Univalent Functions, Heliyon 10 (2024), e31469. https://doi.org/10.1016/j.heliyon.2024.e31469.
- M. Lewin, On a Coefficient Problem for Bi-Univalent Functions, Proc. Amer. Math. Soc. 18 (1967), 63–68. https://doi.org/10.1090/S0002-9939-1967-0206255-1.
- P. Long, G. Murugusundaramoorthy, H. Tang, W. Wang, Subclasses of Analytic and Bi-Univalent Functions Involving a Generalized Mittag-Leffler Function Based on Quasi-Subordination, J. Math. Comput. Sci. 26 (2022), 379–394. https://doi.org/10.22436/jmcs.026.04.06.
- N. Magesh, S. Bulut, Chebyshev Polynomial Coefficient Estimates for a Class of Analytic Bi-Univalent Functions Related to Pseudo-Starlike Functions, Afr. Mat. 29 (2018), 203–209. https://doi.org/10.1007/s13370-017-0535-3.
- A. Mathai, Mittag-Leffler Functions, in: An Introduction to Fractional Calculus (CMSS Module 10), Centre for Mathematical and Statistical Sciences Peechi Campus, Kerala, India, 2015.
- W. Ma, D. Minda, A Unified Treatment of Some Special Classes of Univalent Functions, in: Proceedings of the Conference on Complex Analysis, Tianjin, 1992.
- S. Miller, P. Mocabu, Differential Subordination: Theory and Applications, CRC Press, New York, 2000.
- G.M. Mittag-Leffler, Sur la Nouvelle Fonction E(x), C.R. Acad. Sci. Paris, 137 (1903), 554-558.
- Z. Nehari, Conformal Mappings, McGraw-Hill, New York, 1952.
- E. Netanyahu, The Minimal Distance of the Image Boundary from the Origin and the Second Coefficient of a Univalent Function in |z| < 1, Arch. Ration. Mech. Anal. 32 (1969), 100–112. https://doi.org/10.1007/BF00247676.
- S. Noreen, M. Raza, S.N. Malik, Certain Geometric Properties of Mittag-Leffler Functions, J. Inequal. Appl. 2019 (2019), 94. https://doi.org/10.1186/s13660-019-2044-4.
- S.D. Purohit, R.K. Raina, Fractional q-Calculus and Certain Subclasses of Univalent Analytic Functions, Mathematica, 55 (2013), 62–74.
- H.M. Srivastava, H.L. Manocha, A Treatise on Generating Functions, Halsted Press, Wiley, 1984.
- H.M. Srivastava, M. Kamalı, A. Urdaletova, A Study of the Fekete-Szegö Functional and Coefficient Estimates for Subclasses of Analytic Functions Satisfying a Certain Subordination Condition and Associated with the Gegenbauer Polynomials, AIMS Math. 7 (2022), 2568–2584. https://doi.org/10.3934/math.2022144.
- H.M. Srivastava, M. Tahir, B. Khan, et al. Certain Subclasses of Meromorphically Q-Starlike Functions Associated with the q-Derivative Operators, Ukr. Math. J. 73 (2022), 1462–1477. https://doi.org/10.1007/s11253-022-02005-5.
- S.R. Swamy, A.A. Lupa¸s, A.K. Wanas, J. Nirmala, Applications of Borel Distribution for a New Family of BiUnivalent Functions Defined by Horadam Polynomials, WSEAS Trans. Math. 20 (2021), 630–636. https://doi.org/10.37394/23206.2021.20.67.
- A.K. Wanas, J.A. Khuttar, Applications of Borel Distribution Series on Analytic Functions, Earthline J. Math. Sci. 4 (2020), 71–82. https://doi.org/10.34198/ejms.4120.7182.
- A. Wiman, Über den Fundamental satz in der Theorie der Funcktionen E(x), Acta Math. 29 (1905), 191-201.
- A. Wiman, Über die Nullstellun der Funcktionen E(x), Acta Math. 29 (1905), 217-134.
- C.M. Yan, J.L. Liu, A Family of Meromorphic Functions Involving Generalized Mittag-Leffler Function, J. Math. Inequal. 4 (2018), 943–951. https://doi.org/10.7153/jmi-2018-12-71.