\(L\)-Mild Normality and \(L_2\)-Mild Normality

Main Article Content

Alyaa AlAwadi, Sadeq Ali Thabit

Abstract

The purpose of this work is to introduce and study two new topological properties called \(L\)-mild normality and \(L_2\)-mild normality. A space \(X\) is called an \(L\)-mildly normal space if there exist a mildly normal space \(Y\) and a bijective function \(f:X\to Y\) such that the restriction function \(f|_A:A\to f(A) \) is a homeomorphism for each Lindelof subspace \(A\subseteq X\). If the space \(Y\) is Hausdorff, then the space \(X\) is called \(L_2\)-mildly normal. We investigate these properties and present some examples to illustrate the relationships among \(L\)-mild normality and \(L_2\)-mild normality with other kinds of topological properties.

Article Details

References

  1. S. Alzahrani, L. Kalantan, C-Normal Topological Property, Filomat 31 (2017), 407–411. https://www.jstor.org/stable/24899549.
  2. L. Kalantan, M. Saeed, L-Normality, Topol. Proc. 50 (2017), 141–149.
  3. A. Al-Awadi, L. Kalantan, S. Thabit, C-κ-Normal and C-Mild Normality Topological Properties, J. Adv. Math. Stud. 16 (2023), 15–21.
  4. W. Alqurashi, S. Thabit, C-Almost Normality and L-Almost Normality, Eur. J. Pure Appl. Math. 15 (2022), 1760–1782. https://doi.org/10.29020/nybg.ejpam.v15i4.4570.
  5. S. Thabit, W. Alqurashi, CC-Tychonoffness, CCT3 and CC-Almost Regularity, Eur. J. Pure Appl. Math. 16 (2023), 1260–1273. https://doi.org/10.29020/nybg.ejpam.v16i2.4776.
  6. J. Dugundji, Topology, Allyn and Bacon, Inc., Boston, 1966.
  7. R. Engelking, General Topology, Heldermann, Berlin, 1989.
  8. C.W. Patty, Foundation of Topology, PWS-KENT Publishing Company, Boston, 1993.
  9. C. Kuratowski, Topology I, Hafner, New York, 1958.
  10. M. Mrševi´c, I.L. Reilly, M. Vamanamurthy, On Semi Regularization Topologies, J. Aust. Math. Soc. (Ser. A) 38 (1985), 40–54.
  11. S.A. Thabit, I. Alshammari, W. Alqurashi, Epi-Quasi Normality, Open Math. 19 (2021), 1755–1770. https://doi.org/10.1515/math-2021-0121.
  12. M.K. Singal, A.R. Singal, Mildly Normal Spaces, Kyungpook Math. J. 13 (1973), 27–31.
  13. S. Alzahrani, C-Regular Topological Spaces, J. Math. Anal. 9 (2018), 141–149.
  14. S. ALZahrani, C-Tychonoff and L-Tychonoff Topological Spaces, Eur. J. Pure Appl. Math. 11 (2018), 882–892. https://doi.org/10.29020/nybg.ejpam.v11i3.3253.
  15. L. Kalantan, M. Alhomieyed, CC-Normal Topological Spaces, Turk. J. Math. 41 (2017), 749–755. https://doi.org/10.3906/mat-1604-3.
  16. L. Kalantan, S. Alzahrani, Epinormality, J. Nonlinear Sci. Appl. 9 (2016), 5398–5402.
  17. L. Kalantan, I. Alshammari, Epi-Mild Normality, Open Math. 16 (2018), 1170–1175. https://doi.org/10.1515/math-2018-0099.
  18. I. Alshammari, Epi-Almost Normality, J. Math. Anal. 11 (2020), 52–57.
  19. S.A. AlZahrani, Epiregular Topological Spaces, Afr. Mat. 29 (2018), 803–808. https://doi.org/10.1007/s13370-018-0577-1.
  20. L. Kalantan, M. Alhomieyed, S-Normality, J. Math. Anal. 9 (2018), 48–54.
  21. A.L. Steen, J.A. Seebach, Counterexamples in Topology, Dover Publications, INC., New York, 1995.
  22. M.M. Saeed, L. Kalantan, H. Alzumi, C-Paracompactness and C2-Paracompactness, Turk. J. Math. 43 (2019), 9–20.
  23. S. Ali Thabit, A. Al-Awadi, C2-Mildly Normal Topological Spaces, J. Math. Anal. 15 (2024), 43–54. https://doi.org/10.54379/jma-2024-5-3.
  24. D. Abuzaid, S. Al-Qarhi, L. Kalantan, Closed Extension Topological Spaces, Eur. J. Pure Appl. Math. 15 (2022), 672–680.
  25. I. Alshammari, L. Kalantan, S.A. Thabit, Partial Normality, J. Math. Anal. 10 (2019), 1–8.
  26. A. Alawadi, L. Kalantan, M.M. Saeed, On the Discrete Extension Spaces, J. Math. Anal. 9 (2018), 150–157.