\(L\)-Mild Normality and \(L_2\)-Mild Normality
Main Article Content
Abstract
The purpose of this work is to introduce and study two new topological properties called \(L\)-mild normality and \(L_2\)-mild normality. A space \(X\) is called an \(L\)-mildly normal space if there exist a mildly normal space \(Y\) and a bijective function \(f:X\to Y\) such that the restriction function \(f|_A:A\to f(A) \) is a homeomorphism for each Lindelof subspace \(A\subseteq X\). If the space \(Y\) is Hausdorff, then the space \(X\) is called \(L_2\)-mildly normal. We investigate these properties and present some examples to illustrate the relationships among \(L\)-mild normality and \(L_2\)-mild normality with other kinds of topological properties.
Article Details
References
- S. Alzahrani, L. Kalantan, C-Normal Topological Property, Filomat 31 (2017), 407–411. https://www.jstor.org/stable/24899549.
- L. Kalantan, M. Saeed, L-Normality, Topol. Proc. 50 (2017), 141–149.
- A. Al-Awadi, L. Kalantan, S. Thabit, C-κ-Normal and C-Mild Normality Topological Properties, J. Adv. Math. Stud. 16 (2023), 15–21.
- W. Alqurashi, S. Thabit, C-Almost Normality and L-Almost Normality, Eur. J. Pure Appl. Math. 15 (2022), 1760–1782. https://doi.org/10.29020/nybg.ejpam.v15i4.4570.
- S. Thabit, W. Alqurashi, CC-Tychonoffness, CCT3 and CC-Almost Regularity, Eur. J. Pure Appl. Math. 16 (2023), 1260–1273. https://doi.org/10.29020/nybg.ejpam.v16i2.4776.
- J. Dugundji, Topology, Allyn and Bacon, Inc., Boston, 1966.
- R. Engelking, General Topology, Heldermann, Berlin, 1989.
- C.W. Patty, Foundation of Topology, PWS-KENT Publishing Company, Boston, 1993.
- C. Kuratowski, Topology I, Hafner, New York, 1958.
- M. Mrševi´c, I.L. Reilly, M. Vamanamurthy, On Semi Regularization Topologies, J. Aust. Math. Soc. (Ser. A) 38 (1985), 40–54.
- S.A. Thabit, I. Alshammari, W. Alqurashi, Epi-Quasi Normality, Open Math. 19 (2021), 1755–1770. https://doi.org/10.1515/math-2021-0121.
- M.K. Singal, A.R. Singal, Mildly Normal Spaces, Kyungpook Math. J. 13 (1973), 27–31.
- S. Alzahrani, C-Regular Topological Spaces, J. Math. Anal. 9 (2018), 141–149.
- S. ALZahrani, C-Tychonoff and L-Tychonoff Topological Spaces, Eur. J. Pure Appl. Math. 11 (2018), 882–892. https://doi.org/10.29020/nybg.ejpam.v11i3.3253.
- L. Kalantan, M. Alhomieyed, CC-Normal Topological Spaces, Turk. J. Math. 41 (2017), 749–755. https://doi.org/10.3906/mat-1604-3.
- L. Kalantan, S. Alzahrani, Epinormality, J. Nonlinear Sci. Appl. 9 (2016), 5398–5402.
- L. Kalantan, I. Alshammari, Epi-Mild Normality, Open Math. 16 (2018), 1170–1175. https://doi.org/10.1515/math-2018-0099.
- I. Alshammari, Epi-Almost Normality, J. Math. Anal. 11 (2020), 52–57.
- S.A. AlZahrani, Epiregular Topological Spaces, Afr. Mat. 29 (2018), 803–808. https://doi.org/10.1007/s13370-018-0577-1.
- L. Kalantan, M. Alhomieyed, S-Normality, J. Math. Anal. 9 (2018), 48–54.
- A.L. Steen, J.A. Seebach, Counterexamples in Topology, Dover Publications, INC., New York, 1995.
- M.M. Saeed, L. Kalantan, H. Alzumi, C-Paracompactness and C2-Paracompactness, Turk. J. Math. 43 (2019), 9–20.
- S. Ali Thabit, A. Al-Awadi, C2-Mildly Normal Topological Spaces, J. Math. Anal. 15 (2024), 43–54. https://doi.org/10.54379/jma-2024-5-3.
- D. Abuzaid, S. Al-Qarhi, L. Kalantan, Closed Extension Topological Spaces, Eur. J. Pure Appl. Math. 15 (2022), 672–680.
- I. Alshammari, L. Kalantan, S.A. Thabit, Partial Normality, J. Math. Anal. 10 (2019), 1–8.
- A. Alawadi, L. Kalantan, M.M. Saeed, On the Discrete Extension Spaces, J. Math. Anal. 9 (2018), 150–157.