Improving Computer Experiment Designs with Two-Type Marked Point Processes
Main Article Content
Abstract
This paper presents an alternative approach to constructing computer experiment designs based on stochastic process theory, specifically marked point processes with two types. The originality of this method lies in the use of Markov Chain Monte Carlo (MCMC) techniques, combined with the Metropolis-Hastings algorithm and a new dynamic called local shift dynamics. These tools enable the generation of highly flexible and adaptable experimental designs, which can be tailored to a variety of specific objectives according to experimental needs. Special attention has been given to analyzing the convergence of the Markov chain, thus ensuring the robustness and efficiency of the results obtained. Additionally, a comparative study was conducted to position our method relative to other existing computer designs. This comparison highlights the advantages and disadvantages of our approach in terms of modularity and performance.
Article Details
References
- B.D. Ripley, F.P. Kelly, Markov Point Processes, J. Lond. Math. Soc. s2-15 (1977), 188–192. https://doi.org/10.1112/jlms/s2-15.1.188.
- J. Franco, Planification d’Expériences Numériques en Phase Exploratoire pour des Codes de Calculs Simulant des Phénomènes Complexes, Doctoral Thesis, l’Ecole Nationale Supérieure des Mines de Saint-Etienne, France, (2008).
- H. Elmossaoui, N. Oukid, F. Hannane, Construction of Computer Experiment Designs Using Marked Point Processes, Afr. Mat. 31 (2020), 917–928. https://doi.org/10.1007/s13370-020-00770-9.
- H. Elmossaoui, Contribution à la Méthodologie de la Recherche Expérimentale, Doctoral Thesis, University Saad Dahleb, Blida, Algerie, (2020).
- H. Elmossaoui, N. Oukid, New Computer Experiment Designs Using Continuum Random Cluster Point Process, Int. J. Anal. Appl. 21 (2023), 51. https://doi.org/10.28924/2291-8639-21-2023-51.
- A. Ait Ameur, H. Elmossaoui, N. Oukid, New Computer Experiment Designs with Area-Interaction Point Processes, Mathematics 12 (2024), 2397. https://doi.org/10.3390/math12152397.
- A. Baddeley, J. Møller, J. Moller, Nearest-Neighbour Markov Point Processes and Random Sets, Int. Stat. Rev. 57 (1989), 89-121. https://doi.org/10.2307/1403381.
- W.K. Hastings, Monte Carlo Sampling Methods Using Markov Chains and Their Applications, Biometrika 57 (1970), 97–109. https://doi.org/10.1093/biomet/57.1.97.
- S. Chib, E. Greenberg, Understanding the Metropolis-Hastings Algorithm, Amer. Stat. 49 (1995), 327–335. https://doi.org/10.1080/00031305.1995.10476177.
- R.L. Dobrushin, Central Limit Theorem for Nonstationary Markov Chains. I, Theor. Probab. Appl. 1 (1956), 65–80. https://doi.org/10.1137/1101006.
- G. Winkler, Image Analysis Random fields and Dynamic Monte Carlo Methods, Springer, Berlin, (1995).
- M. Gunzburger, J. Burkardt, Uniformity Measures for Point Samples in Hypercubes, (2004). https://people.sc.fsu.edu/~jburkardt/publications/gb_2004.pdf.
- T.T. Warnock, Computational Investigations of Low-Discrepancy Point Sets II, in: H. Niederreiter, P.J.-S. Shiue (Eds.), Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing, Springer New York, 1995: pp. 354–361. https://doi.org/10.1007/978-1-4612-2552-2_23.
- M.E. Johnson, L.M. Moore, D. Ylvisaker, Minimax and Maximin Distance Designs, J. Stat. Plan. Inference 26 (1990), 131–148. https://doi.org/10.1016/0378-3758(90)90122-B.
- J.H. Halton, On the Efficiency of Certain Quasi-Random Sequences of Points in Evaluating Multi-Dimensional Integrals, Numer. Math. 2 (1960), 84–90. https://doi.org/10.1007/BF01386213.
- I.M. Sobol, Uniformly Distributed Sequences with an Additional Uniform Property, USSR Comput. Math. Math. Phys. 16 (1976), 236–242. https://doi.org/10.1016/0041-5553(76)90154-3.
- H. Faure, Discrépance de Suites Associées à Un Système de Numération (En Dimension s), Acta Arith. 41 (1982), 337–351. https://doi.org/10.4064/aa-41-4-337-351.
- W.-L. Loh, On Latin Hypercube Sampling, Ann. Stat. 24 (1996), https://doi.org/10.1214/aos/1069362310.
- M.D. Morris, T.J. Mitchell, Exploratory Designs for Computational Experiments, J. Stat. Plan. Inference 43 (1995), 381–402. https://doi.org/10.1016/0378-3758(94)00035-T.
- M.C. Shewry, H.P. Wynn, Maximum Entropy Sampling, J. Appl. Stat. 14 (1987), 165–170. https://doi.org/10.1080/02664768700000020.