Analysis of Weyl-Type Operators and the Windowed Kontorovich-Lebedev-Clifford Transform with Applications

Main Article Content

Yassine Fantasse, Abdellatif Akhlidj

Abstract

In this paper, we define the windowed Kontorovich-Lebedev-Clifford transform and introduce the corresponding Weyl transform. Furthermore, we examine the boundedness of the windowed Kontorovich-Lebedev-Clifford in Lebesgue spaces and establish some of its fundamental properties. We also provide criteria for the boundedness and compactness of the Weyl transform in Lebesgue spaces.

Article Details

References

  1. H. Weyl, The Theory of Groups and Quantum Mechanics, Dover Publications, 1950.
  2. M.W. Wong, Weyl Transform, Springer, 1998.
  3. B. Simon, The Weyl Transform and L p Functions on Phase Space, Proc. Amer. Math. Soc. 116 (1992), 1045-1047. https://doi.org/10.2307/2159487.
  4. J. Zhao, L. Peng, Wavelet and Weyl Transforms Associated with the Spherical Mean Operator, Integr. Equ. Oper. Theory 50 (2004), 279–290. https://doi.org/10.1007/s00020-003-1222-3.
  5. S.K. Verma, A. Prasad, Characterization of Weyl Operator in Terms of Mehler–Fock Transform, Math. Methods Appl. Sci. 43 (2020), 9119–9128. https://doi.org/10.1002/mma.6606.
  6. A. Terras, Harmonic Analysis on Symmetric Spaces and Applications I, Springer, New York, 1985. https://doi.org/10.1007/978-1-4612-5128-6.
  7. A. Prasad, S.K. Verma, The Mehler-Fock-Clifford Transform and Pseudo-Differential Operator on Function Spaces, Filomat 33 (2019), 2457–2469. https://doi.org/10.2298/FIL1908457P.
  8. J. Zhao, L. Peng, Windowed-Kontorovich-Lebedev Transforms, Front. Math. China 5 (2010), 777–792. https://doi.org/10.1007/s11464-010-0082-9.
  9. J. Maan, A. Prasad, Weyl Operator Associated with Index Whittaker Transform, J. Pseudo-Differ. Oper. Appl. 13 (2022), 27. https://doi.org/10.1007/s11868-022-00459-6.
  10. U.K. Mandal, Continuity of Index Kontorovich-Lebedev Transform on Certain Function Space and Associated Convolution Operator, Palestine J. Math. 11 (2022), 165–171.
  11. A. Prasad, U.K. Mandal, The Kontorovich-Lebedev-Clifford Transform, Filomat 35 (2021), 4811–4824. https://doi.org/10.2298/FIL2114811P.
  12. A. Erdelyi, W. Magnus, F. Oberhettinger, F.G. Tricomi, Higher Transcendental Functions, McGraw-Hill, 1953.