Analysis of Weyl-Type Operators and the Windowed Kontorovich-Lebedev-Clifford Transform with Applications
Main Article Content
Abstract
In this paper, we define the windowed Kontorovich-Lebedev-Clifford transform and introduce the corresponding Weyl transform. Furthermore, we examine the boundedness of the windowed Kontorovich-Lebedev-Clifford in Lebesgue spaces and establish some of its fundamental properties. We also provide criteria for the boundedness and compactness of the Weyl transform in Lebesgue spaces.
Article Details
References
- H. Weyl, The Theory of Groups and Quantum Mechanics, Dover Publications, 1950.
- M.W. Wong, Weyl Transform, Springer, 1998.
- B. Simon, The Weyl Transform and L p Functions on Phase Space, Proc. Amer. Math. Soc. 116 (1992), 1045-1047. https://doi.org/10.2307/2159487.
- J. Zhao, L. Peng, Wavelet and Weyl Transforms Associated with the Spherical Mean Operator, Integr. Equ. Oper. Theory 50 (2004), 279–290. https://doi.org/10.1007/s00020-003-1222-3.
- S.K. Verma, A. Prasad, Characterization of Weyl Operator in Terms of Mehler–Fock Transform, Math. Methods Appl. Sci. 43 (2020), 9119–9128. https://doi.org/10.1002/mma.6606.
- A. Terras, Harmonic Analysis on Symmetric Spaces and Applications I, Springer, New York, 1985. https://doi.org/10.1007/978-1-4612-5128-6.
- A. Prasad, S.K. Verma, The Mehler-Fock-Clifford Transform and Pseudo-Differential Operator on Function Spaces, Filomat 33 (2019), 2457–2469. https://doi.org/10.2298/FIL1908457P.
- J. Zhao, L. Peng, Windowed-Kontorovich-Lebedev Transforms, Front. Math. China 5 (2010), 777–792. https://doi.org/10.1007/s11464-010-0082-9.
- J. Maan, A. Prasad, Weyl Operator Associated with Index Whittaker Transform, J. Pseudo-Differ. Oper. Appl. 13 (2022), 27. https://doi.org/10.1007/s11868-022-00459-6.
- U.K. Mandal, Continuity of Index Kontorovich-Lebedev Transform on Certain Function Space and Associated Convolution Operator, Palestine J. Math. 11 (2022), 165–171.
- A. Prasad, U.K. Mandal, The Kontorovich-Lebedev-Clifford Transform, Filomat 35 (2021), 4811–4824. https://doi.org/10.2298/FIL2114811P.
- A. Erdelyi, W. Magnus, F. Oberhettinger, F.G. Tricomi, Higher Transcendental Functions, McGraw-Hill, 1953.