Solution and Fuzzy Stability of n-Dimensional Quadratic Functional Equation

Main Article Content

K. Indira, P. Agilan, M. Suresh, Manivannan Balamurugan, S. Karthikeyan, R. Sakthi

Abstract

In this paper, the authors have developed and established the solution of the n-dimensional quadratic functional equation within the context of a vector space, specifically focusing on its properties and behavior in fuzzy normed spaces. They not only provide an explicit form of the solution but also investigate the stability of this solution under various perturbations. By extending the classical stability results to the setting of fuzzy normed spaces, the authors explore how uncertainties, represented by fuzzy norms, affect the solution’s stability.

Article Details

References

  1. J. Aczel, J. Dhombres, Functional Equations in Several Variables, Cambridge University Press, 1989. https://doi.org/10.1017/CBO9781139086578.
  2. T. Aoki, On the Stability of the Linear Transformation in Banach Spaces, J. Math. Soc. Japan 2 (1950), 64–66. https://doi.org/10.2969/jmsj/00210064.
  3. M. Arunkumar, S. Karthikeyan, Solution and Stability of n-Dimensional Additive Functional Equation, Int. J. Appl. Math. 25 (2012), 163–174.
  4. G. Asgari, Y. Cho, Y. Lee, M. Eshaghi Gordji, Fixed Points and Stability of Functional Equations in Fuzzy Ternary Banach Algebras, J. Inequal. Appl. 2013 (2013), 166. https://doi.org/10.1186/1029-242X-2013-166.
  5. T. Bag, S.K. Samanta, Finite Dimensional Fuzzy Normed Linear Spaces, J. Fuzzy Math. 11 (2003) 687-705.
  6. T. Bag, S.K. Samanta, Fuzzy Bounded Linear Operators, Fuzzy Sets Syst. 151 (2005), 513–547. https://doi.org/10.1016/j.fss.2004.05.004.
  7. C. Borelli, G.L. Forti, On a General Hyers-Ulam Stability Result, Int. J. Math. Math. Sci. 18 (1995), 229–236. https://doi.org/10.1155/S0161171295000287.
  8. I.S. Chang, E.H. Lee, H.M. Kim, On Hyers–ulam–rassias Stability of a Quadratic Functional Equation, Math. Inequal. Appl. 6 (2003), 87-95.
  9. S.C. Cheng, J.N. Mordeson, Fuzzy Linear Operator and Fuzzy Normed Linear Spaces, Bull. Calcutta Math. Soc. 86 (1994), 429-436.
  10. P.W. Cholewa, Remarks on the Stability of Functional Equations, Aeq. Math. 27 (1984), 76–86. https://doi.org/10.1007/BF02192660.
  11. St. Czerwik, On the Stability of the Quadratic Mapping in Normed Spaces, Abh.Math.Semin.Univ.Hambg. 62 (1992), 59–64. https://doi.org/10.1007/BF02941618.
  12. S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific, 2002. https://doi.org/10.1142/4875.
  13. C. Felbin, Finite Dimensional Fuzzy Normed Linear Space, Fuzzy Sets Syst. 48 (1992), 239–248. https://doi.org/10.1016/0165-0114(92)90338-5.
  14. P. Gavruta, A Generalization of the Hyers-Ulam-Rassias Stability of Approximately Additive Mappings, J. Math. Anal. Appl. 184 (1994), 431–436. https://doi.org/10.1006/jmaa.1994.1211.
  15. D.H. Hyers, On the Stability of the Linear Functional Equation, Proc. Natl. Acad. Sci. U.S.A. 27 (1941), 222–224. https://www.jstor.org/stable/87271.
  16. D.H. Hyers, G. Isac, T.M. Rassias, Stability of Functional Equations in Several Variables, Birkhäuser Boston, Boston, MA, 1998. https://doi.org/10.1007/978-1-4612-1790-9.
  17. K.W. Jun, H.M. Kim, On the Stability of an N-Dimensional Quadratic and Additive Functional Equation, Math. Inequal. Appl. (2006), 153–165. https://doi.org/10.7153/mia-09-16.
  18. S.M. Jung, On the Hyers-Ulam stability of the functional equations that have the quadratic property, J. Math. Anal. Appl., 222 (1998), 126-137. https://doi.org/10.1006/jmaa.1998.5916
  19. S.M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Palm Harbor, 2001.
  20. P.L. Kannappan, Quadratic Functional Equation and Inner Product Spaces, Results Math. 27 (1995), 368–372. https://doi.org/10.1007/BF03322841.
  21. P. Kannappan, Functional Equations and Inequalities with Applications, Springer, 2009. https://doi.org/10.1007/978-0-387-89492-8.
  22. S. Karthikeyan, T.R.K. Kumar, S. Vijayakumar, P. Palani, Stabilities and Instabilities of Additive-Quadratic 3D Functional Equations in Paranormed Spaces, Journal of Mathematics and Computer Science 28 (2022), 37–51. https://doi.org/10.22436/jmcs.028.01.04.
  23. A.K. Katsaras, Fuzzy Topological Vector Spaces II, Fuzzy Sets Syst. 12 (1984), 143–154. https://doi.org/10.1016/0165-0114(84)90034-4.
  24. I. Kramosil, J. Michalek, Fuzzy Metric and Statistical Metric Spaces, Kybernetica 11 (1975), 326-334.
  25. S.V. Krishna, K.K.M. Sarma, Separation of Fuzzy Normed Linear Spaces, Fuzzy Sets Syst. 63 (1994), 207–217. https://doi.org/10.1016/0165-0114(94)90351-4.
  26. A.K. Mirmostafaee, M.S. Moslehian, Fuzzy Versions of Hyers–Ulam–Rassias Theorem, Fuzzy Sets Syst. 159 (2008), 720–729. https://doi.org/10.1016/j.fss.2007.09.016.
  27. A.K. Mirmostafaee, M. Mirzavaziri, M.S. Moslehian, Fuzzy Stability of the Jensen Functional Equation, Fuzzy Sets Syst. 159 (2008), 730–738. https://doi.org/10.1016/j.fss.2007.07.011.
  28. J.M. Rassias, On Approximation of Approximately Linear Mappings by Linear Mappings, J. Functional Anal. 46 (1982), 126–130. https://doi.org/10.1016/0022-1236(82)90048-9.
  29. J.M. Rassias, S. Karthikeyan, G. Ganapathy, M. Suresh, T.R.K. Kumar, Generalized Ulam-Hyers Stability Results of a Quadratic Functional Equation in Felbin’s Type Fuzzy Normed Linear Spaces, Int. J. Anal. Appl. 20 (2022), 15. https://doi.org/10.28924/2291-8639-20-2022-15.
  30. T.M. Rassias, On the Stability of the Linear Mapping in Banach Spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300. https://www.jstor.org/stable/2042795.
  31. T.M. Rassias, On the Stability of Functional Equations in Banach Spaces, J. Math. Anal. Appl. 251 (2000), 264–284. https://doi.org/10.1006/jmaa.2000.7046.
  32. T.M. Rassias, ed., Functional Equations, Inequalities and Applications, Springer, 2003. https://doi.org/10.1007/978-94-017-0225-6.
  33. K. Ravi, M. Arunkumar, J.M. Rassias, Ulam Stability for the Orthogonally General Euler - Lagrange Type Functional Equation, Int. J. Math. Stat. 3 (2008), 36-46.
  34. F. Skof, Proprieta’ Locali e Approssimazione di Operatori, Rend. Sem. Mat. Fis. Milano 53 (1983), 113–129. https://doi.org/10.1007/BF02924890.
  35. S.M. Ulam, Problems in Modern Mathematics (Science Editions), Wiley, 1964.
  36. J. Xiao, X. Zhu, Fuzzy Normed Space of Operators and Its Completeness, Fuzzy Sets Syst. 133 (2003), 389–399. https://doi.org/10.1016/S0165-0114(02)00274-9.