Geometry of Certain Almost Conformal Metrics in f(R)-Gravity

Main Article Content

Rajendra Prasad, Abhinav Verma, Mohd Bilal, Abdul Haseeb, Vindhyachal Singh Yadav

Abstract

In this article, we explore certain almost conformal Ricci solitons in f(R)-gravity by assuming the potential vector field as a concircular vector field. We also study the almost conformal gradient-Ricci solitons and the almost conformal ω-Ricci solitons in f(R)-gravity. Furthermore, it is shown that an almost conformal ω-Ricci soliton and an almost conformal ω-Ricci-Yamabe soliton establish Poisson’s equation. At the last, some examples are constructed.

Article Details

References

  1. R.S. Hamilton, Lectures on Geometric Flows, Lecture Notes, (1989).
  2. R.S. Hamilton, The Ricci Flow on Surfaces, in: J.A. Isenberg (Ed.), Contemporary Mathematics, American Mathematical Society, Providence, Rhode Island, 1988: pp. 237–262. https://doi.org/10.1090/conm/071/954419.
  3. B.B. Sinha, R. Sharma, On Para-A-Einstein Manifolds, Publ. Inst. Math. (Beogr.), Nouv. Sér. 34 (1983), 211-215. https://eudml.org/doc/258502.
  4. C.L. Bejan, M. Crasmareanu, Ricci Solitons in Manifolds with Quasi-Constant Curvature, Publ. Math. Debrecen 78 (2011), 235–243. https://doi.org/10.5486/PMD.2011.4797.
  5. C. Calin, M. Crasmareanu, From the Eisenhart Problem to Ricci Solitons in ˇ f-Kenmotsu Manifolds, Bull. Malays. Math. Sci. Soc. 33 (2010), 361-368. http://eudml.org/doc/244370.
  6. B.Y. CHEN, Some Results on Concircular Vector Fields and Their Applications to Ricci Solitons, Bull. Korean Math. Soc. 52 (2015), 1535–1547. https://doi.org/10.4134/BKMS.2015.52.5.1535.
  7. J.T. Cho, M. Kimura, Ricci Solitons and Real Hypersurfaces in a Complex Space Form, Tohoku Math. J. 61 (2009), 205-212. https://doi.org/10.2748/tmj/1245849443.
  8. A. Haseeb, R. Prasad, η-Ricci Solitons on ∈-LP-Sasakian Manifolds With a Quarter-Symmetric Metric Connection, Honam Math. J. 41 (2019), 539–558. https://doi.org/10.5831/HMJ.2019.41.3.539.
  9. R. Prasad, A. Verma, V.S. Yadav, Characterization of Perfect Fluid Lorentzian α-Para Kenmotsu Spacetimes, Ganita 73 (2023), 89-104.
  10. S.K. Hui, R. Prasad, T. Pal, Ricci Solitons on Submanifolds of (LCS)n-Manifolds, Ganita 68 (2018), 53-63.
  11. S. Pigola, M. Rigoli, M. Rimoldi, A.G. Setti, Ricci Almost Solitons, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 10 (2011), 757-799.
  12. A.E. Fischer, An Introduction to Conformal Ricci Flow, Class. Quantum Gravity 21 (2004), S171-S218. https://doi.org/10.1088/0264-9381/21/3/011.
  13. N. Basu, A. Bhattacharya, Conformal Ricci Soliton in Kenmotsu Manifold, Glob. J. Adv. Res. Class. Mod. Geom. 4 (2015), 15-21.
  14. S. Güler, M. Crasmareanu, Ricci–Yamabe Maps for Riemannian Flows and Their Volume Variation and Volume Entropy, Turk. J. Math. 43 (2019), 2631–2641. https://doi.org/10.3906/mat-1902-38.
  15. G. Catino, L. Cremaschi, Z. Djadli, C. Mantegazza, L. Mazzieri, The Ricci–Bourguignon Flow, Pac. J. Math. 287 (2017), 337–370. https://doi.org/10.2140/pjm.2017.287.337.
  16. G. Catino, L. Mazzieri, Gradient Einstein Solitons, Nonlinear Anal. 132 (2016), 66–94. https://doi.org/10.1016/j.na.2015.10.021.
  17. H.A. Buchdahl, Non-Linear Lagrangians and Cosmological Theory, Mon. Not. R. Astron. Soc. 150 (1970), 1–8. https://doi.org/10.1093/mnras/150.1.1.
  18. K. De, U.C. De, Investigations on Solitons in f(R)-Gravity, Eur. Phys. J. Plus 137 (2022), 180. https://doi.org/10.1140/epjp/s13360-022-02399-y.
  19. K. De, U.C. De, Ricci-Yamabe Solitons in f(R)-Gravity, Int. Electron. J. Geom. 16 (2023), 334–342. https://doi.org/10.36890/iejg.1234057.
  20. P.H. Chavanis, Cosmology with a Stiff Matter Era, Phys. Rev. D. 92 (2015), 103004. https://doi.org/10.1103/PhysRevD.92.103004.
  21. A. Fialkow, Conformal Geodesics, Trans. Amer. Math. Soc. 45 (1939), 443–473. https://doi.org/10.1090/S0002-9947-1939-1501998-9.
  22. B. O’Neill, Semi-Riemannian Geometry: With Applications to Relativity, Academic Press, New York, 1983.
  23. S. Sarkar, S. Dey, A.H. Alkhaldi, A. Bhattacharyya, Geometry of Para-Sasakian Metric as an Almost Conformal η-Ricci Soliton, J. Geom. Phys. 181 (2022), 104651. https://doi.org/10.1016/j.geomphys.2022.104651.
  24. Y. Li, S. Dey, S. Pahan, A. Ali, Geometry of Conformal η-Ricci Solitons and Conformal η-Ricci Almost Solitons on Paracontact Geometry, Open Math. 20 (2022), 574–589. https://doi.org/10.1515/math-2022-0048.
  25. R. Prasad, V. Kumar, Conformal η-Ricci Soliton in Lorentzian Para Kenmotsu Manifolds, Gulf J. Math. 14 (2023), 54–67. https://doi.org/10.56947/gjom.v14i2.931.
  26. T. Dutta, N. Basu, A. Bhattacharyya, Almost Conformal Ricci Solituons on 3-Dimensional Trans-Sasakian Manifold, Hacettepe J. Math. Stat. 45 (2016), 1379-1392.
  27. A. Haseeb, M.A. Khan, Conformal η-Ricci-Yamabe Solitons within the Framework of -LP-Sasakian 3-Manifolds, Adv. Math. Phys. 2022 (2022), 3847889. https://doi.org/10.1155/2022/3847889.
  28. R. Prasad, A. Haseeb, V. Kumar, η-Ricci-Yamabe and ∗-η-Ricci-Yamabe Solitons in Lorentzian Para-Kenmotsu Manifolds, Analysis 44 (2024), 375–384. https://doi.org/10.1515/anly-2023-0039.
  29. P. Zhang, Y. Li, S. Roy, S. Dey, A. Bhattacharyya, Geometrical Structure in a Perfect Fluid Spacetime with Conformal Ricci–Yamabe Soliton, Symmetry 14 (2022), 594. https://doi.org/10.3390/sym14030594.
  30. S.K. Chaubey, A. Haseeb, Conformal η-Ricci-Yamabe Solitons in the Framework of Riemannian Manifolds, in: B.Y. Chen, M.A. Choudhary, M.N.I. Khan (Eds.), Geometry of Submanifolds and Applications, Springer, Singapore, 2024: pp. 209–224. https://doi.org/10.1007/978-981-99-9750-3_13.