Modelling and Optimal Control of Influenza Dynamics with Structured Populations Based on Education and Isolation
Main Article Content
Abstract
This paper presents a new mathematical model for the transmission of avian influenza virus dynamics with education-structured susceptible and isolation-structured infectious human populations in the presence of vaccination. Several dynamical systems methodologies are employed to analyse the avian influenza in human-bird interacting populations. The fundamental properties exhibited by the model are assessed through the theory of positivity and boundedness of solutions. The effective reproduction number, Re, that measures the spread potential of the influenza infection is calculated using the next generation matrix approach. Metzler matrix approach and Lyapunov function are employed to investigate the global asymptotic dynamics of the model about its influenza-free and endemic states, respectively. Furthermore, the model is extended to accommodate four time-dependent control interventions, such as public awareness campaign, vaccination, treatment with anti-viral drugs, and birds culling strategy. By applying Pontryagin’s maximum principle, the optimal control quadruple are characterized. Specifically, combinations of any three of the control interventions are explored in forestalling the transmission of avian influenza in the population. The findings of the study do not only reveal various parameters of the model to be targeted for prevention and control of the disease, but also show the importance of consolidating control efforts in the fight against the avian influenza disease.
Article Details
References
- R.G. Webster, W.J. Bean, O.T. Gorman, T.M. Chambers, Y. Kawaoka, Evolution and Ecology of Influenza A Viruses, Microbiol. Rev. 56 (1992), 152–179. https://doi.org/10.1128/mr.56.1.152-179.1992.
- C. Modnak, Mathematical Modelling of an Avian Influenza: Optimal Control Study for Intervention Strategies, Appl. Math. Inf. Sci. 11 (2017), 1049–1057. https://doi.org/10.18576/amis/110411.
- World Health Organization, Avian Influenza, 2024. https://www.who.int/westernpacific/wpro-emergencies/surveillance/avian-influenza.
- CDC, Key Facts about Avian Influenza (Avian Flu) and Highly Pathogenic Avian Influenza A (H5N1) Virus, Centers for Disease Control and Prevention, 2024.
- WHO, Global Influenza Report, World Health Organization, 2018.
- N.S. Chong, J.M. Tchuenche, R.J. Smith, A Mathematical Model of Avian Influenza with Half-Saturated Incidence, Theory Biosci. 133 (2014), 23–38. https://doi.org/10.1007/s12064-013-0183-6.
- J.K. Taubenberger, D.M. Morens, 1918 Influenza: The Mother of All Pandemics, Emerg. Infect. Dis. 12 (2006), 15–22. https://doi.org/10.3201/eid1201.050979.
- A.B. Gumel, Global Dynamics of a Two-Strain Avian Influenza Model, Int. J. Comput. Math. 86 (2009), 85–108. https://doi.org/10.1080/00207160701769625.
- M.A. Khan, M. Farhan, S. Islam, et al. Modeling the Transmission Dynamics of Avian Influenza with Saturation and Psychological Effect, Discrete Contin. Dyn. Syst. S 12 (2019), 455–474. https://doi.org/10.3934/dcdss.2019030.
- M.A. Khan, S. Ullah, Y. Khan, M. Farhan, Modeling and Scientific Computing for the Transmission Dynamics of Avian Influenza with Half-Saturated Incidence, Int. J. Model. Simul. Sci. Comput. 11 (2020), 2050035. https://doi.org/10.1142/S179396232050035X.
- X. Jiang, Y. Yu, F. Meng, et al. Modelling the Dynamics of Avian Influenza With Nonlinear Recovery Rate and Psychological Effect, J. Appl. Anal. Comput. 10 (2020), 1170–1192. https://doi.org/10.11948/20190253.
- M.H. Alharbi, C.M. Kribs, A Mathematical Modeling Study: Assessing Impact of Mismatch Between Influenza Vaccine Strains and Circulating Strains in Hajj, Bull. Math. Biol. 83 (2021), 7. https://doi.org/10.1007/s11538-020-00836-6.
- I.A. Baba, H. Ahmad, M.D. Alsulami, et al. A Mathematical Model to Study Resistance and Non-Resistance Strains of Influenza, Results Phys. 26 (2021), 104390. https://doi.org/10.1016/j.rinp.2021.104390.
- M. Barik, C. Swarup, T. Singh, et al. Dynamical Analysis, Optimal Control and Spatial Pattern in an Influenza Model with Adaptive Immunity in Two Stratified Population, AIMS Math. 7 (2022), 4898–4935. https://doi.org/10.3934/math.2022273.
- Z. Du, S.J. Fox, T. Ingle, et al. Projecting the Combined Health Care Burden of Seasonal Influenza and COVID-19 in the 2020–2021 Season, MDM Policy Pract. 7 (2022), 23814683221084631. https://doi.org/10.1177/23814683221084631.
- T. Zheng, L. Nie, H. Zhu, et al. Role of Seasonality and Spatial Heterogeneous in the Transmission Dynamics of Avian Influenza, Nonlinear Anal.: Real World Appl. 67 (2022), 103567. https://doi.org/10.1016/j.nonrwa.2022.103567.
- R. Sachak-Patwa, E.I. Lafferty, C.J. Schmit, et al. A Target-Cell Limited Model Can Reproduce Influenza Infection Dynamics in Hosts with Differing Immune Responses, J. Theor. Biol. 567 (2023), 111491. https://doi.org/10.1016/j.jtbi.2023.111491.
- H. Gourram, M. Baroudi, A. Labzai, M. Belam, Mathematical Modeling and Optimal Control Strategy for the Influenza (H5N1), Commun. Math. Biol. Neurosci. 2023 (2023), 113. https://doi.org/10.28919/cmbn/8199.
- A. Malek, A. Hoque, Mathematical Modeling of the Infectious Spread and Outbreak Dynamics of Avian Influenza with Seasonality Transmission for Chicken Farms, Comparative Immunology, Microbiol. Infect. Dis. 104 (2024), 102108. https://doi.org/10.1016/j.cimid.2023.102108.
- F. Pinotti, L. Kohnle, J. Lourenço, et al. Modelling the Transmission Dynamics of H9N2 Avian Influenza Viruses in a Live Bird Market, Nat. Commun. 15 (2024), 3494. https://doi.org/10.1038/s41467-024-47703-9.
- C. Andreu-Vilarroig, R.J. Villanueva, G. González-Parra, Mathematical Modeling for Estimating Influenza Vaccine Efficacy: A Case Study of the Valencian Community, Spain, Infect. Dis. Model. 9 (2024), 744–762. https://doi.org/10.1016/j.idm.2024.04.006.
- Y. Chen, J. Zhang, Dynamic Analysis and Optimal Control of Influenza Model with Discrete Age Structure, Math. Methods Appl. Sci. 47 (2024), 4260–4282. https://doi.org/10.1002/mma.9813.
- S.F. Abimbade, S. Olaniyi, O.A. Ajala, Recurrent Malaria Dynamics: Insight from Mathematical Modelling, Eur. Phys. J. Plus 137 (2022), 292. https://doi.org/10.1140/epjp/s13360-022-02510-3.
- P. Van Den Driessche, J. Watmough, Reproduction Numbers and Sub-Threshold Endemic Equilibria for Compartmental Models of Disease Transmission, Math. Biosci. 180 (2002), 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6.
- O.D. Falowo, S. Olaniyi, A.T. Oladipo, Optimal Control Assessment of Rift Valley Fever Model with Vaccination and Environmental Sanitation in the Presence of Treatment Delay, Model. Earth Syst. Environ. 9 (2023), 457–471. https://doi.org/10.1007/s40808-022-01508-1.
- S. Olaniyi, S.F. Abimbade, F.M. Chuma, O.A. Adepoju, O.D. Falowo, A Fractional-Order Tuberculosis Model with Efficient and Cost-Effective Optimal Control Interventions, Decis. Anal. J. 8 (2023), 100324. https://doi.org/10.1016/j.dajour.2023.100324.
- A.D. Polyanin, A.V. Manzhirov, Handbook of Mathematics for Engineers and Scientists, Chapman & Hall/CRC, (2007).
- O.S. Obabiyi, S. Olaniyi, Asymptotic Stability of Malaria Dynamics With Vigilant Human Compartment, Int. J. Appl. Math. 29 (2016), 127-144. https://doi.org/10.12732/ijam.v29i1.10.
- C. Castillo-Chavez, P. Blower, P. van den Driessche, W. Kirschner, A. Yakubu, Mathematical Approaches for Emerging and Reemerging Infectious Diseases: An Introduction, Springer, 2002.
- S. Olaniyi, G.G. Kareem, S.F. Abimbade, F.M. Chuma, S.O. Sangoniyi, Mathematical Modelling and Analysis of Autonomous HIV/AIDS Dynamics with Vertical Transmission and Nonlinear Treatment, Iran. J. Sci. 48 (2024), 181–192. https://doi.org/10.1007/s40995-023-01565-w.
- S.F. Abimbade, F.M. Chuma, S.O. Sangoniyi, et al. Global Dynamics of a Social Hierarchy-Stratified Malaria Model: Insight from Fractional Calculus, Mathematics 12 (2024), 1593. https://doi.org/10.3390/math12101593.
- M.A. Rois, Fatmawati, C. Alfiniyah, S. Martini, D. Aldila, F. Nyabadza, Modeling and Optimal Control of COVID19 with Comorbidity and Three-Dose Vaccination in Indonesia, J. Biosaf. Biosecurity 6 (2024), 181–195. https://doi.org/10.1016/j.jobb.2024.06.004.
- J.P. La Salle, The Stability of Dynamical Systems, SIAM, 1976. https://doi.org/10.1137/1.9781611970432.
- L.S. Pontryagin, V.G. Boltyanskii, Mathematical Theory of Optimal Processes, Wiley, 1962.
- J.K.K. Asamoah, E. Yankson, E. Okyere, et al. Optimal Control and Cost-Effectiveness Analysis for Dengue Fever Model with Asymptomatic and Partial Immune Individuals, Results Phys. 31 (2021), 104919. https://doi.org/10.1016/j.rinp.2021.104919.
- O.F. Lawal, T.T. Yusuf, A. Abidemi, On Mathematical Modelling of Optimal Control of Typhoid Fever with Efficiency Analysis, J. Nigerian Soc. Phys. Sci. 6 (2024), 2057. https://doi.org/10.46481/jnsps.2024.2057.
- O. Boukary, Z. Malicki, G. Elisée, Mathematical Modeling and Optimal Control of an HIV/AIDS Transmission Model, Int. J. Anal. Appl. 22 (2024), 234. https://doi.org/10.28924/2291-8639-22-2024-234.
- F.B. Agusto, Optimal Isolation Control Strategies and Cost-Effectiveness Analysis of a Two-Strain Avian Influenza Model, Biosystems 113 (2013), 155–164. https://doi.org/10.1016/j.biosystems.2013.06.004.
- S. Edward, N. Shaban, Deterministic Compartmental Model for Optimal Control Strategies of Giardiasis Infection with Saturating Incidence and Environmental Dynamics, Healthc. Anal. 7 (2025), 100383. https://doi.org/10.1016/j.health.2025.100383.
- S. Olaniyi, J.O. Olayiwola, O.S. Obabiyi, R.S. Lebelo, S.F. Abimbade, Mathematical Analysis of Non-Autonomous HIV/AIDS Transmission Dynamics with Efficient and Cost-Effective Intervention Strategies, Contemp. Math. 6 (2025), 1380–1400. https://doi.org/10.37256/cm.6220256138.
- H.A. Engida, D. Fisseha, Malaria and Leptospirosis Co-Infection: A Mathematical Model Analysis with Optimal Control and Cost-Effectiveness Analysis, Sci. Afr. 27 (2025), e02517. https://doi.org/10.1016/j.sciaf.2024.e02517.
- N.K. Goswami, S. Olaniyi, S.F. Abimbade, F.M. Chuma, A Mathematical Model for Investigating the Effect of Media Awareness Programs on the Spread of COVID-19 with Optimal Control, Healthc. Anal. 5 (2024), 100300. https://doi.org/10.1016/j.health.2024.100300.
- S. Barman, S. Jana, S. Majee, D.K. Das, T.K. Kar, Complex Dynamics of a Fractional-Order Epidemic Model with Saturated Media Effect, Nonlinear Dyn. 112 (2024), 18611–18637. https://doi.org/10.1007/s11071-024-09932-x.
- S. Lenhart, J.T. Workman, Optimal Control Applied to Biological Models, Chapman & Hall, London, (2007).
- S. Olaniyi, S.F. Abimbade, O.A. Ajala, F.M. Chuma, Efficiency and Economic Analysis of Intervention Strategies for Recurrent Malaria Transmission, Qual. Quant. 58 (2024), 627–645. https://doi.org/10.1007/s11135-023-01664-1.