Sum of g-Frames in Hilbert C∗-Modules
Main Article Content
Abstract
In this article, we study g-frames in Hilbert C∗-modules and investigate conditions under which the sum of two g-frames (or a g-frame and a g-Bessel sequence) remains a g-frame. We also address the stability of g-frames under certain perturbations and provide illustrative examples in the context of C∗-algebras. Our results unify and extend many of the existing theorems on g-frames, focusing on the invertibility of associated operators as a key condition for guaranteeing that sums of g-frames preserve the g-frame property.
Article Details
References
- L. Arambasic, On Frames for Countably Generated Hilbert C∗-Modules, Proc. Amer. Math. Soc. 135 (2006), 469–478. https://doi.org/10.1090/S0002-9939-06-08498-X.
- N. Assila, H. Labrigui, A. Touri, M. Rossafi, Integral Operator Frames on Hilbert C∗-Modules, Ann. Univ. Ferrara 70 (2024), 1271–1284. https://doi.org/10.1007/s11565-024-00501-z.
- X. Chi, P. Li, Approximate Oblique Dual g-Frames for Closed Subspaces of Hilbert Spaces, Mediterr. J. Math. 20 (2023), 220. https://doi.org/10.1007/s00009-023-02421-2.
- I. Daubechies, A. Grossmann, Y. Meyer, Painless Nonorthogonal Expansions, J. Math. Phys. 27 (1986), 1271–1283. https://doi.org/10.1063/1.527388.
- R.J. Duffin, A.C. Schaeffer, A Class of Nonharmonic Fourier Series, Trans. Amer. Math. Soc. 72 (1952), 341–366. https://doi.org/10.1090/S0002-9947-1952-0047179-6.
- M. Ghiati, M. Rossafi, M. Mouniane, H. Labrigui, A. Touri, Controlled Continuous ∗-g-Frames in Hilbert C∗- Modules, J. Pseudo-Differ. Oper. Appl. 15 (2024), 2. https://doi.org/10.1007/s11868-023-00571-1.
- I. Kaplansky, Modules Over Operator Algebras, Amer. J. Math. 75 (1953), 839. https://doi.org/10.2307/2372552.
- A. Karara, M. Rossafi, A. Touri, K-Biframes in Hilbert Spaces, J. Anal. (2024). https://doi.org/10.1007/s41478-024-00831-3.
- A. Khosravi, B.Khosravi, Fusion Frames and g-Frames in Hilbert C∗-Modules, Int. J. Wavelets Multiresolution Inf. Process. 6 (2008), 433-446.
- A. Lfounoune, R. El Jazzar, K-Frames in Super Hilbert C∗-Modules, Int. J. Anal. Appl. 23 (2025), 19. https://doi.org/10.28924/2291-8639-23-2025-19.
- D. Li, J. Leng, Operator Representations of g-Frames in Hilbert Spaces, Linear Multilinear Algebra 68 (2020), 1861–1877. https://doi.org/10.1080/03081087.2019.1566428.
- H. Massit, M. Rossafi, C. Park, Some Relations between Continuous Generalized Frames, Afr. Mat. 35 (2024), 12. https://doi.org/10.1007/s13370-023-01157-2.
- F. Nhari, R. Echarghaoui, M. Rossafi, K-g-Fusion Frames in Hilbert C∗-Modules, Int. J. Anal. Appl. 19 (2021), 836-857. https://doi.org/10.28924/2291-8639-19-2021-836.
- W.L. Paschke, Inner Product Modules over B ∗ -Algebras, Trans. Amer. Math. Soc. 182 (1973), 443–468. https://doi.org/10.1090/S0002-9947-1973-0355613-0.
- M. Rossafi, F.D. Nhari, C. Park, S. Kabbaj, Continuous G-Frames with C∗-Valued Bounds and Their Properties, Complex Anal. Oper. Theory 16 (2022), 44. https://doi.org/10.1007/s11785-022-01229-4.
- M. Rossafi, S. Kabbaj, Generalized Frames for B(H,K), Iran. J. Math. Sci. Inform. 17 (2022), 1–9. https://doi.org/10.52547/ijmsi.17.1.1.
- M. Rossafi, M. Ghiati, M. Mouniane, F. Chouchene, A. Touri, S. Kabbaj, Continuous Frame in Hilbert C∗-Modules, J. Anal. 31 (2023), 2531–2561. https://doi.org/10.1007/s41478-023-00581-8.
- M. Rossafi, F. Nhari, A. Touri, Continuous Generalized Atomic Subspaces for Operators in Hilbert Spaces, J. Anal. (2024). https://doi.org/10.1007/s41478-024-00869-3.
- M. Rossafi, S. Kabbaj, ∗-K-Operator Frame for End∗ A (H), Asian-Eur. J. Math. 13 (2020), 2050060. https://doi.org/10.1142/S1793557120500606.
- M. Rossafi, S. Kabbaj, Operator Frame for End∗ A (H), J. Linear Topol. Algebra 8 (2019), 85-95.
- M. Rossafi, S. Kabbaj, ∗-K-g-Frames in Hilbert A-Modules, J. Linear Topol. Algebra 7 (2018), 63-71.
- M. Rossafi, S. Kabbaj, ∗-g-Frames in Tensor Products of Hilbert C∗-Modules, Ann. Univ. Paedagog. Crac. Stud. Math. 17 (2018), 17-25.
- N.K. Sahu, Controlled g-Frames in Hilbert C∗-Modules, Math. Anal. Contemp. Appl. 3 (2021), 65-82.
- W. Sun, g-Frames and g-Riesz Bases, J. Math. Anal. Appl. 322 (2006), 437–452. https://doi.org/10.1016/j.jmaa.2005.09.039.
- X. Xiao, X. Zeng, Some Properties of g-Frames in Hilbert C∗-Modules, J. Math. Anal. Appl. 363 (2010), 399-408. https://doi.org/10.1016/j.jmaa.2009.08.043.