Generalization of Kodaira’s Embedding Theorem for Compact Kähler Manifolds with Semi-Positive Chern Class

Main Article Content

Sayed Saber, Abdullah A. Alahmari

Abstract

Kodaira embedding theorem states that a compact complex manifold can only be embedded into a complex projective space PN for some N if it admits a positive line bundle. Based on Chow’s theorem, projective algebraic manifolds are algebraic. The purpose of this study is to generalize Kodaira’s known theorem. We show that if X is a compact Kähler manifold of complex dimension n and its first Chern class is semi-positive and of rank n−1 at one point of X, then X can be embedded into PN for some integer N. Furthermore, we prove that this embedding is unique up to biholomorphism. We also show that X admits a Kähler metric whose Ricci curvature is bounded from below.

Article Details

References

  1. K. Kodaira, On Kahler Varieties of Restricted Type (An Intrinsic Characterization of Algebraic Varieties), Ann. Math. 60 (1954), 28-48. https://doi.org/10.2307/1969701.
  2. J.P. Serre, Géométrie Algébrique et Géométrie Analytique, Ann. Inst. Fourier 6 (1956), 1–42. https://doi.org/10.5802/aif.59.
  3. O. Riemenschneider, A Generalization of Kodaira’s Embedding Theorem, Math. Ann. 200 (1973), 99–102. https://doi.org/10.1007/BF01578295.
  4. Y.T. Siu, A Vanishing Theorem for Semipositive Line Bundles over Non-Kähler Manifolds, J. Differ. Geom. 19 (1984), 431-452. https://doi.org/10.4310/jdg/1214438686.
  5. J.P. Demailly, Champs Magnétiques et Inégalités de Morse Pour La d 00-Cohomologie, Ann. Inst. Fourier 35 (1985), 189–229. https://doi.org/10.5802/aif.1034.
  6. O. Abdelkader, Embedding of a Compact Kähler Manifold Into a Projective Space, Tensor N. S. 60 (1998), 236-338.
  7. Y. Zhu, A Generalization of the Kodaira Vanishing and Embedding Theorem, arXiv:alg-geom/9502002 (1995). https://doi.org/10.48550/ARXIV.ALG-GEOM/9502002.
  8. S. Mammola, Generic Vanishing in Geometria Analitica e Algebrica, Thesis, Università degli Studi di Padova, (2018).
  9. O. Abdelkader, S. Saber, Solution to ∂-Equations With Exact Support on Pseudoconvex Manifolds, Int. J. Geom. Methods Mod. Phys. 4 (2007), 339-348.
  10. S. Saber, Solution to ∂ Problem With Exact Support and Regularity for the ∂-Neumann Operator on Weakly q-Convex Domains, Int. J. Geom. Methods Mod. Phys. 7 (2010), 135-142.
  11. S. Saber, Solvability of the Tangential Cauchy-Riemann Equations on Boundaries of Strictly q-Convex Domains, Lobachevskii J. Math. 32 (2011), 189–193. https://doi.org/10.1134/S1995080211030115.
  12. S. Saber, The ∂-Neumann Operator on Lipschitz q-Pseudoconvex Domains, Czechoslovak Math. J. 61 (2011), 721–731. https://doi.org/10.1007/s10587-011-0021-2.
  13. S. Saber, Global Boundary Regularity for the ∂-Problem on Strictly q-Convex and q-Concave Domains, Complex Anal. Oper. Theory 6 (2012), 1157–1165. https://doi.org/10.1007/s11785-010-0114-1.
  14. S. Saber, Solution to ∂ Problem for Smooth Forms and Currents on Strictly q-Convex Domains, Int. J. Geom. Methods Mod. Phys. 9 (2012), 1220002. https://doi.org/10.1142/S0219887812200022.
  15. S. Saber, The ¯∂-Problem on q-Pseudoconvex Domains with Applications, Math. Slovaca 63 (2013), 521–530. https://doi.org/10.2478/s12175-013-0115-4.
  16. S. Saber, The L 2 ∂-Cauchy Problem on Weakly q-Pseudoconvex Domains in Stein Manifolds, Czechoslovak Math. J. 65 (2015), 739–745. https://doi.org/10.1007/s10587-015-0205-2.
  17. S. Saber, The ∂-Problem With Support Conditions and Pseudoconvexity of General Order in Kähler Manifolds, J. Korean Math. Soc. 53 (2016), 1211-1223. https://doi.org/10.4134/JKMS.J140768.
  18. S. Saber, Global Solution for the ∂-Problem on Non Pseudoconvex Domains in Stein Manifolds, J. Korean Math. Soc. 54 (2017), 1787-1799. https://doi.org/10.4134/JKMS.J160668.
  19. S. Saber, Compactness of the Commutators of Toeplitz Operators on q-Pseudoconvex Domains, Electron. J. Differ. Equ. 2018 (2018), 111.
  20. X. Yang, RC-Positivity, Rational Connectedness and Yau’s Conjecture, Cambridge J. Math. 6 (2018), 183–212. https://doi.org/10.4310/CJM.2018.v6.n2.a2.
  21. S. Saber, Global Regularity for ∂ on an Annulus between Two Weakly Convex Domains, Boll. Unione Mat. Ital. 11 (2018), 309–314. https://doi.org/10.1007/s40574-017-0135-z.
  22. S. Saber, The L 2 ∂-Cauchy Problem on Pseudoconvex Domains and Applications, Asian-Eur. J. Math. 11 (2018), 1850025. https://doi.org/10.1142/S1793557118500250.
  23. S. Saber, Sobolev Regularity of the Bergman Projection on Certain Pseudoconvex Domains, Trans. A. Razmadze Math. Inst. 171 (2017), 90-102. https://doi.org/10.1016/j.trmi.2016.10.004.
  24. S. Saber, Solution to ∂-Problem with Support Conditions in Weakly q-Convex Domains, Commun. Korean Math. Soc. 33 (2018), 409-421. https://doi.org/10.4134/CKMS.C170022.
  25. S. Saber, Compactness of the complex Green operator in a Stein manifold. U.P.B. Sci. Bull. Ser. A 81 (2019), 185-200.
  26. S. Saber, Compactness of Commutators of Toeplitz Operators on q-Pseudoconvex Domains, Electron. J. Differ. Equ. 2018 (2018), 111.
  27. S. Saber, Global Solvability and Regularity for ∂ on an Annulus between Two Weakly Convex Domains Which Satisfy Property (P), Asian-Eur. J. Math. 12 (2019), 1950041. https://doi.org/10.1142/S1793557119500414.
  28. S. Saber, Compactness of the Weighted dbar-Neumann Operator and Commutators of the Bergman Projection with Continuous Functions, J. Geom. Phys. 138 (2019), 194–205. https://doi.org/10.1016/j.geomphys.2018.12.022.
  29. S. Saber, L 2 Estimates and Existence Theorems for ∂b on Lipschitz Boundaries of Q-Pseudoconvex Domains, Comptes Rendus. Mathématique 358 (2020), 435–458. https://doi.org/10.5802/crmath.43.
  30. S. Saber, The ∂-Cauchy Problem on Weakly q-Convex Domains in CPn , Kragujevac J. Math. 44 (2020), 581-591. https://doi.org/10.46793/KgJMat2004.581S.
  31. S. Saber, A. Alahmari, Global Regularity of ∂ on Certain Pseudoconvexity, Trans. A. Razmadze Math. Inst. 175 (2021), 417-427.
  32. S. Saber, On the Applications of Bochner-Kodaira-Morrey-Kohn Identity, Kragujevac J. Math. 45 (2021), 881–896. https://doi.org/10.46793/KgJMat2106.881S.
  33. H.D.S. Adam, K.I.A. Ahmed, S. Saber, M. Marin, Sobolev Estimates for the ∂ and the ∂-Neumann Operator on Pseudoconvex Manifolds, Mathematics 11 (2023), 4138. https://doi.org/10.3390/math11194138.
  34. H.D.S. Adam, K.I. Adam, S. Saber, G. Farid, Existence Theorems for the dbar Equation and Sobolev Estimates on q-Convex Domains, AIMS Math. 8 (2023), 31141–31157. https://doi.org/10.3934/math.20231594.
  35. S. Saber, A. Alahmari, Compactness Estimate for the ∂-Neumann Problem on a q-Pseudoconvex Domain in a Stein Manifold, Kragujevac J. Math. 47 (2023), 627-636.
  36. H. Grauert, I. Lieb, Das Ramirezsche Integral und die Lösung der Gleichung ∂f = α im Bereich der Beschränkten Formen, Rice Inst. Pamph. - Rice Univ. Stud. 56 (1970), 29-50. https://hdl.handle.net/1911/63010.
  37. S. Saber, M. Youssif, Y. Arko, et al. Subellipticity, Compactness, H Estimates and Regularity for ¯∂ on Weakly q-Pseudoconvex/Concave Domains, Rend. Semin. Mat. Univ. Padova (2024). https://doi.org/10.4171/rsmup/160.
  38. J. Girbau, Fibrés semi-positifs et semi-négatifs sur une variété Kählérienne compacte, Ann. Mat. Pura Appl. 101 (1974), 171–183. https://doi.org/10.1007/BF02417103.
  39. J. Girbau, Sur le Théorème de Le Potier d’Annulation de la Cohomologie, C. R. Acad. Sc. Paris 283 (1976), 355-358.
  40. J. Morrow, K. Kodaira, Complex Manifolds, Holt, Rinehart, and Winston, Inc. (1971).
  41. R.O. Wells, Kodaira’s Projective Embedding Theorem, in: Differential Analysis on Complex Manifolds, Springer New York, 2008: pp. 217–240. https://doi.org/10.1007/978-0-387-73892-5_6.
  42. P. Griffiths, J. Harris, Principles of Algebraic Geometry, Wiley-Interscience, New York (1978).
  43. D. Huybrechts, Complex Geometry: An Introduction, Springer, (2005).
  44. B. Shiffman, A.J. Sommese, Vanishing Theorems on Complex Manifolds, Birkhäuser Boston, 1985. https://doi.org/10.1007/978-1-4899-6680-3.