Generalization of Kodaira’s Embedding Theorem for Compact Kähler Manifolds with Semi-Positive Chern Class
Main Article Content
Abstract
Kodaira embedding theorem states that a compact complex manifold can only be embedded into a complex projective space PN for some N if it admits a positive line bundle. Based on Chow’s theorem, projective algebraic manifolds are algebraic. The purpose of this study is to generalize Kodaira’s known theorem. We show that if X is a compact Kähler manifold of complex dimension n and its first Chern class is semi-positive and of rank n−1 at one point of X, then X can be embedded into PN for some integer N. Furthermore, we prove that this embedding is unique up to biholomorphism. We also show that X admits a Kähler metric whose Ricci curvature is bounded from below.
Article Details
References
- K. Kodaira, On Kahler Varieties of Restricted Type (An Intrinsic Characterization of Algebraic Varieties), Ann. Math. 60 (1954), 28-48. https://doi.org/10.2307/1969701.
- J.P. Serre, Géométrie Algébrique et Géométrie Analytique, Ann. Inst. Fourier 6 (1956), 1–42. https://doi.org/10.5802/aif.59.
- O. Riemenschneider, A Generalization of Kodaira’s Embedding Theorem, Math. Ann. 200 (1973), 99–102. https://doi.org/10.1007/BF01578295.
- Y.T. Siu, A Vanishing Theorem for Semipositive Line Bundles over Non-Kähler Manifolds, J. Differ. Geom. 19 (1984), 431-452. https://doi.org/10.4310/jdg/1214438686.
- J.P. Demailly, Champs Magnétiques et Inégalités de Morse Pour La d 00-Cohomologie, Ann. Inst. Fourier 35 (1985), 189–229. https://doi.org/10.5802/aif.1034.
- O. Abdelkader, Embedding of a Compact Kähler Manifold Into a Projective Space, Tensor N. S. 60 (1998), 236-338.
- Y. Zhu, A Generalization of the Kodaira Vanishing and Embedding Theorem, arXiv:alg-geom/9502002 (1995). https://doi.org/10.48550/ARXIV.ALG-GEOM/9502002.
- S. Mammola, Generic Vanishing in Geometria Analitica e Algebrica, Thesis, Università degli Studi di Padova, (2018).
- O. Abdelkader, S. Saber, Solution to ∂-Equations With Exact Support on Pseudoconvex Manifolds, Int. J. Geom. Methods Mod. Phys. 4 (2007), 339-348.
- S. Saber, Solution to ∂ Problem With Exact Support and Regularity for the ∂-Neumann Operator on Weakly q-Convex Domains, Int. J. Geom. Methods Mod. Phys. 7 (2010), 135-142.
- S. Saber, Solvability of the Tangential Cauchy-Riemann Equations on Boundaries of Strictly q-Convex Domains, Lobachevskii J. Math. 32 (2011), 189–193. https://doi.org/10.1134/S1995080211030115.
- S. Saber, The ∂-Neumann Operator on Lipschitz q-Pseudoconvex Domains, Czechoslovak Math. J. 61 (2011), 721–731. https://doi.org/10.1007/s10587-011-0021-2.
- S. Saber, Global Boundary Regularity for the ∂-Problem on Strictly q-Convex and q-Concave Domains, Complex Anal. Oper. Theory 6 (2012), 1157–1165. https://doi.org/10.1007/s11785-010-0114-1.
- S. Saber, Solution to ∂ Problem for Smooth Forms and Currents on Strictly q-Convex Domains, Int. J. Geom. Methods Mod. Phys. 9 (2012), 1220002. https://doi.org/10.1142/S0219887812200022.
- S. Saber, The ¯∂-Problem on q-Pseudoconvex Domains with Applications, Math. Slovaca 63 (2013), 521–530. https://doi.org/10.2478/s12175-013-0115-4.
- S. Saber, The L 2 ∂-Cauchy Problem on Weakly q-Pseudoconvex Domains in Stein Manifolds, Czechoslovak Math. J. 65 (2015), 739–745. https://doi.org/10.1007/s10587-015-0205-2.
- S. Saber, The ∂-Problem With Support Conditions and Pseudoconvexity of General Order in Kähler Manifolds, J. Korean Math. Soc. 53 (2016), 1211-1223. https://doi.org/10.4134/JKMS.J140768.
- S. Saber, Global Solution for the ∂-Problem on Non Pseudoconvex Domains in Stein Manifolds, J. Korean Math. Soc. 54 (2017), 1787-1799. https://doi.org/10.4134/JKMS.J160668.
- S. Saber, Compactness of the Commutators of Toeplitz Operators on q-Pseudoconvex Domains, Electron. J. Differ. Equ. 2018 (2018), 111.
- X. Yang, RC-Positivity, Rational Connectedness and Yau’s Conjecture, Cambridge J. Math. 6 (2018), 183–212. https://doi.org/10.4310/CJM.2018.v6.n2.a2.
- S. Saber, Global Regularity for ∂ on an Annulus between Two Weakly Convex Domains, Boll. Unione Mat. Ital. 11 (2018), 309–314. https://doi.org/10.1007/s40574-017-0135-z.
- S. Saber, The L 2 ∂-Cauchy Problem on Pseudoconvex Domains and Applications, Asian-Eur. J. Math. 11 (2018), 1850025. https://doi.org/10.1142/S1793557118500250.
- S. Saber, Sobolev Regularity of the Bergman Projection on Certain Pseudoconvex Domains, Trans. A. Razmadze Math. Inst. 171 (2017), 90-102. https://doi.org/10.1016/j.trmi.2016.10.004.
- S. Saber, Solution to ∂-Problem with Support Conditions in Weakly q-Convex Domains, Commun. Korean Math. Soc. 33 (2018), 409-421. https://doi.org/10.4134/CKMS.C170022.
- S. Saber, Compactness of the complex Green operator in a Stein manifold. U.P.B. Sci. Bull. Ser. A 81 (2019), 185-200.
- S. Saber, Compactness of Commutators of Toeplitz Operators on q-Pseudoconvex Domains, Electron. J. Differ. Equ. 2018 (2018), 111.
- S. Saber, Global Solvability and Regularity for ∂ on an Annulus between Two Weakly Convex Domains Which Satisfy Property (P), Asian-Eur. J. Math. 12 (2019), 1950041. https://doi.org/10.1142/S1793557119500414.
- S. Saber, Compactness of the Weighted dbar-Neumann Operator and Commutators of the Bergman Projection with Continuous Functions, J. Geom. Phys. 138 (2019), 194–205. https://doi.org/10.1016/j.geomphys.2018.12.022.
- S. Saber, L 2 Estimates and Existence Theorems for ∂b on Lipschitz Boundaries of Q-Pseudoconvex Domains, Comptes Rendus. Mathématique 358 (2020), 435–458. https://doi.org/10.5802/crmath.43.
- S. Saber, The ∂-Cauchy Problem on Weakly q-Convex Domains in CPn , Kragujevac J. Math. 44 (2020), 581-591. https://doi.org/10.46793/KgJMat2004.581S.
- S. Saber, A. Alahmari, Global Regularity of ∂ on Certain Pseudoconvexity, Trans. A. Razmadze Math. Inst. 175 (2021), 417-427.
- S. Saber, On the Applications of Bochner-Kodaira-Morrey-Kohn Identity, Kragujevac J. Math. 45 (2021), 881–896. https://doi.org/10.46793/KgJMat2106.881S.
- H.D.S. Adam, K.I.A. Ahmed, S. Saber, M. Marin, Sobolev Estimates for the ∂ and the ∂-Neumann Operator on Pseudoconvex Manifolds, Mathematics 11 (2023), 4138. https://doi.org/10.3390/math11194138.
- H.D.S. Adam, K.I. Adam, S. Saber, G. Farid, Existence Theorems for the dbar Equation and Sobolev Estimates on q-Convex Domains, AIMS Math. 8 (2023), 31141–31157. https://doi.org/10.3934/math.20231594.
- S. Saber, A. Alahmari, Compactness Estimate for the ∂-Neumann Problem on a q-Pseudoconvex Domain in a Stein Manifold, Kragujevac J. Math. 47 (2023), 627-636.
- H. Grauert, I. Lieb, Das Ramirezsche Integral und die Lösung der Gleichung ∂f = α im Bereich der Beschränkten Formen, Rice Inst. Pamph. - Rice Univ. Stud. 56 (1970), 29-50. https://hdl.handle.net/1911/63010.
- S. Saber, M. Youssif, Y. Arko, et al. Subellipticity, Compactness, H Estimates and Regularity for ¯∂ on Weakly q-Pseudoconvex/Concave Domains, Rend. Semin. Mat. Univ. Padova (2024). https://doi.org/10.4171/rsmup/160.
- J. Girbau, Fibrés semi-positifs et semi-négatifs sur une variété Kählérienne compacte, Ann. Mat. Pura Appl. 101 (1974), 171–183. https://doi.org/10.1007/BF02417103.
- J. Girbau, Sur le Théorème de Le Potier d’Annulation de la Cohomologie, C. R. Acad. Sc. Paris 283 (1976), 355-358.
- J. Morrow, K. Kodaira, Complex Manifolds, Holt, Rinehart, and Winston, Inc. (1971).
- R.O. Wells, Kodaira’s Projective Embedding Theorem, in: Differential Analysis on Complex Manifolds, Springer New York, 2008: pp. 217–240. https://doi.org/10.1007/978-0-387-73892-5_6.
- P. Griffiths, J. Harris, Principles of Algebraic Geometry, Wiley-Interscience, New York (1978).
- D. Huybrechts, Complex Geometry: An Introduction, Springer, (2005).
- B. Shiffman, A.J. Sommese, Vanishing Theorems on Complex Manifolds, Birkhäuser Boston, 1985. https://doi.org/10.1007/978-1-4899-6680-3.