Certain Coefficient Inequalities of Functions Using a Linear Multiplier Fractional q-Differintegral Operator with Conic Domain

Main Article Content

Rmsen Abdulbari Ali Ahmed, N. Ravikumar

Abstract

In this article, we study the concept of a linear multiplier fractional q-differintegral operator associated with the symmetric conic domain. This work aims to define new subclasses of \(k-ST^{\sigma, \mathfrak{m}}_{q, \beta}[\mathfrak{X}, \mathfrak{Y}]\) with Janowski functions, their coefficient bounds, and their consequences result are derived.

Article Details

References

  1. M. Arif, Z.G. Wang, R. Khan, S.K. Lee, Coefficient Inequalities for Janowski-Sakaguchi Type Functions Associated with Conic Regions, Hacet. J. Math. Stat. 47 (2018), 261–271.
  2. A.W. Goodman, Univalent Functions, Mariner Pub. Co, Tampa, 1983.
  3. G. Gasper, M. Rahman, Basic Hypergeometric Series, Cambridge University Press, Cambridge, New York, 1990.
  4. F.H. Jackson, XI.–On q-Functions and a Certain Difference Operator, Trans. R. Soc. Edinburgh 46 (1909), 253–281. https://doi.org/10.1017/S0080456800002751.
  5. W. Janowski, Some Extremal Problems for Certain Families of Analytic Functions I, Ann. Polon. Math. 28 (1973), 297–326. https://doi.org/10.4064/ap-28-3-297-326.
  6. S. Kanas, A. Wisniowska, Conic Regions and K-Uniform Convexity, J. Comput. Appl. Math. 105 (1999), 327–336. https://doi.org/10.1016/S0377-0427(99)00018-7.
  7. S. Kanas, A. Wisniowska, Conic Domains and Starlike Functions, Rev. Roumaine Math. Pures Appl. 45 (2000), 647–657.
  8. S. Kanas, Coefficient Estimates in Subclasses of the Carathéodory Class Related to Conical Domains, Acta Math. Univ. Comenianae, New Ser. 74 (2005), 149–161. http://eudml.org/doc/128956.
  9. V. Kac, P. Cheung, Quantum Calculus, Springer, New York, 2002. https://doi.org/10.1007/978-1-4613-0071-7.
  10. S. Mahmood, M. Jabeen, S.N. Malik, H.M. Srivastava, R. Manzoor, S.M.J. Riaz, Some Coefficient Inequalities of q-Starlike Functions Associated with Conic Domain Defined by q-Derivative, J. Funct. Spaces 2018 (2018), 8492072. https://doi.org/10.1155/2018/8492072.
  11. S. Mahmood, S.N. Malik, S. Farman, S.M.J. Riaz, S. Farwa, Uniformly Alpha-Quasi-Convex Functions Defined by Janowski Functions, J. Funct. Spaces 2018 (2018), 6049512. https://doi.org/10.1155/2018/6049512.
  12. K.I. Noor, S.N. Malik, On Coefficient Inequalities of Functions Associated with Conic Domains, Comput. Math. Appl. 62 (2011), 2209–2217. https://doi.org/10.1016/j.camwa.2011.07.006.
  13. S.D. Purohit, R.K. Raina, Fractional q-Calculus and Certain Subclass of Univalent Analytic Functions, Mathematica 55 (2013), 62–74.
  14. N. Ravikumar, Certain Classes of Analytic Functions Defined by Fractional q-Calculus Operator, Acta Univ. Sapientiae, Math. 10 (2018), 178–188. https://doi.org/10.2478/ausm-2018-0015.
  15. W. Rogosinski, On the Coefficients of Subordinate Functions, Proc. London Math. Soc. s2-48 (1945), 48–82. https://doi.org/10.1112/plms/s2-48.1.48.
  16. H.M. Srivastava, B. Khan, N. Khan, Q.Z. Ahmad, Coefficient Inequalities for q-Starlike Functions Associated with the Janowski Functions, Hokkaido Math. J. 48 (2019), 407–425. https://doi.org/10.14492/hokmj/1562810517.
  17. H. Silverman, Univalent Functions with Negative Coefficients, Proc. Amer. Math. Soc. 51 (1975), 109–116. https://doi.org/10.1090/S0002-9939-1975-0369678-0.