Best Proximity Point Results for Multivalued Non-Self Mappings in O-Complete Metric Space
Main Article Content
Abstract
The main objective of this paper is to find the sufficient conditions for the existence of best proximity points for multivalued non-self mapping in the setting of O-complete metric space. We prove the existence of best proximity point by introducing the new concept called proximal relation in O-sets along with various contraction conditions on multivalued non-self mappings. In addition, we provide an example to support our main result.
Article Details
References
- A. Abkar, M. Gabeleh, Best Proximity Points for Cyclic Mappings in Ordered Metric Spaces, J. Optim. Theory Appl. 150 (2011), 188–193. https://doi.org/10.1007/s10957-011-9810-x.
- A. Abkar, M. Gabeleh, Best Proximity Points of Non-Self Mappings, TOP 21 (2013), 287–295. https://doi.org/10.1007/s11750-012-0255-7.
- A. Abkar, M. Gabeleh, Generalized Cyclic Contractions in Partially Ordered Metric Spaces, Optim. Lett. 6 (2012), 1819–1830. https://doi.org/10.1007/s11590-011-0379-y.
- A. Abkar, M. Gabeleh, The Existence of Best Proximity Points for Multivalued Non-Self-Mappings, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 107 (2013), 319–325. https://doi.org/10.1007/s13398-012-0074-6.
- I. Altun, G. Minak, H. Da ˘g, Multivalued F-Contractions on Complete Metric Spaces, J. Nonlinear Convex Anal. 16 (2015), 659–666.
- M.A. Al-Thagafi, N. Shahzad, Convergence and Existence Results for Best Proximity Points, Nonlinear Anal.: Theory Methods Appl. 70 (2009), 3665–3671. https://doi.org/10.1016/j.na.2008.07.022.
- S.S. Basha, Discrete Optimization in Partially Ordered Sets, J. Glob. Optim. 54 (2012), 511–517. https://doi.org/10.1007/s10898-011-9774-2.
- S. Sadiq Basha, Best Proximity Points: Global Optimal Approximate Solutions, J. Glob. Optim. 49 (2011), 15–21. https://doi.org/10.1007/s10898-009-9521-0.
- S.S. Basha, Best Proximity Point Theorems on Partially Ordered Sets, Optim. Lett. 7 (2013), 1035–1043. https://doi.org/10.1007/s11590-012-0489-1.
- S. Sadiq Basha, Extensions of Banach’s Contraction Principle, Numer. Funct. Anal. Optim. 31 (2010), 569–576. https://doi.org/10.1080/01630563.2010.485713.
- S.S. Basha, P. Veeramani, Best Approximations and Best Proximity Pairs, Acta Sci. Math. (Szeged) 63 (1997), 289–300.
- S. Sadiq Basha, P. Veeramani, Best Proximity Pair Theorems for Multifunctions with Open Fibres, J. Approx. Theory 103 (2000), 119–129. https://doi.org/10.1006/jath.1999.3415.
- K. Fan, Extensions of Two Fixed Point Theorems of F. E. Browder, Math. Z. 112 (1969), 234–240. https://doi.org/10.1007/BF01110225.
- A.A. Eldred, W.A. Kirk, P. Veeramani, Proximal Normal Structure and Relatively Nonexpansive Mappings, Stud. Math. 171 (2005), 283–293. https://doi.org/10.4064/sm171-3-5.
- A.A. Eldred, P. Veeramani, Existence and Convergence of Best Proximity Points, J. Math. Anal. Appl. 323 (2006), 1001–1006. https://doi.org/10.1016/j.jmaa.2005.10.081.
- M.E. Gordji, M. Rameani, M. De La Sen, Y.J. Cho, On Orthogonal Sets and Banach Fixed Point Theorem, Fixed Point Theory 18 (2017), 569–578. https://doi.org/10.24193/fpt-ro.2017.2.45.
- M.R. Haddadi, S.M. Moshtaghioun, Some Results on the Best Proximity Pair, Abstr. Appl. Anal. 2011 (2011), 158430. https://doi.org/10.1155/2011/158430.
- W.K. Kim, K.H. Lee, Existence of Best Proximity Pairs and Equilibrium Pairs, J. Math. Anal. Appl. 316 (2006), 433–446. https://doi.org/10.1016/j.jmaa.2005.04.053.
- W.A. Kirk, S. Reich, P. Veeramani, Proximinal Retracts and Best Proximity Pair Theorems, Numer. Funct. Anal. Optim. 24 (2003), 851–862. https://doi.org/10.1081/NFA-120026380.
- V. Pragadeeswarar, M. Marudai, P. Kumam, Best Proximity Point Theorems for Multivalued Mappings on Partially Ordered Metric Spaces, J. Nonlinear Sci. Appl. 9 (2016), 1911–1921.
- V. Pragadeeswarar, R. Gopi, Existence of Common Best Proximity Point for Single and Multivalued Non-Self Mappings, Carpathian J. Math. 37 (2021), 273–285. https://www.jstor.org/stable/27082105.
- V.S. Raj, P. Veeramani, Best Proximity Pair Theorems for Relatively Nonexpansive Mappings, Appl. Gen.Topol. 10 (2009), 21–28. https://doi.org/10.4995/agt.2009.1784.
- V. Sankar Raj, A Best Proximity Point Theorem for Weakly Contractive Non-Self-Mappings, Nonlinear Anal.: Theory Methods Appl. 74 (2011), 4804–4808. https://doi.org/10.1016/j.na.2011.04.052.
- P. Srinivasan, P. Veeramani, On Existence of Equilibrium Pair for Constrained Generalized Games, Fixed Point Theory Appl. 2004 (2004), 704376. https://doi.org/10.1155/S1687182004308132.
- M. De La Sen, R.P. Agarwal, Some Fixed Point-Type Results for a Class of Extended Cyclic Self-Mappings with a More General Contractive Condition, Fixed Point Theory Appl. 2011 (2011), 59. https://doi.org/10.1186/1687-1812-2011-59.
- M. Gabeleh, Proximal Weakly Contractive and Proximal Nonexpansive Non-Self-Mappings in Metric and Banach Spaces, J. Optim. Theory Appl. 158 (2013), 615–625. https://doi.org/10.1007/s10957-012-0246-8.
- M. Gabeleh, Best Proximity Points: Global Minimization of Multivalued Non-Self Mappings, Optim. Lett. 8 (2014), 1101–1112. https://doi.org/10.1007/s11590-013-0628-3.
- R.K. Sharma, S. Chandok, Multivalued Problems, Orthogonal Mappings, and Fractional Integro-Differential Equation, J. Math. 2020 (2020), 6615478. https://doi.org/10.1155/2020/6615478.