Best Proximity Point Results for Multivalued Non-Self Mappings in O-Complete Metric Space

Main Article Content

V. Pragadeeswarar, V. Thinkal, Manuel De la Sen

Abstract

The main objective of this paper is to find the sufficient conditions for the existence of best proximity points for multivalued non-self mapping in the setting of O-complete metric space. We prove the existence of best proximity point by introducing the new concept called proximal relation in O-sets along with various contraction conditions on multivalued non-self mappings. In addition, we provide an example to support our main result.

Article Details

References

  1. A. Abkar, M. Gabeleh, Best Proximity Points for Cyclic Mappings in Ordered Metric Spaces, J. Optim. Theory Appl. 150 (2011), 188–193. https://doi.org/10.1007/s10957-011-9810-x.
  2. A. Abkar, M. Gabeleh, Best Proximity Points of Non-Self Mappings, TOP 21 (2013), 287–295. https://doi.org/10.1007/s11750-012-0255-7.
  3. A. Abkar, M. Gabeleh, Generalized Cyclic Contractions in Partially Ordered Metric Spaces, Optim. Lett. 6 (2012), 1819–1830. https://doi.org/10.1007/s11590-011-0379-y.
  4. A. Abkar, M. Gabeleh, The Existence of Best Proximity Points for Multivalued Non-Self-Mappings, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 107 (2013), 319–325. https://doi.org/10.1007/s13398-012-0074-6.
  5. I. Altun, G. Minak, H. Da ˘g, Multivalued F-Contractions on Complete Metric Spaces, J. Nonlinear Convex Anal. 16 (2015), 659–666.
  6. M.A. Al-Thagafi, N. Shahzad, Convergence and Existence Results for Best Proximity Points, Nonlinear Anal.: Theory Methods Appl. 70 (2009), 3665–3671. https://doi.org/10.1016/j.na.2008.07.022.
  7. S.S. Basha, Discrete Optimization in Partially Ordered Sets, J. Glob. Optim. 54 (2012), 511–517. https://doi.org/10.1007/s10898-011-9774-2.
  8. S. Sadiq Basha, Best Proximity Points: Global Optimal Approximate Solutions, J. Glob. Optim. 49 (2011), 15–21. https://doi.org/10.1007/s10898-009-9521-0.
  9. S.S. Basha, Best Proximity Point Theorems on Partially Ordered Sets, Optim. Lett. 7 (2013), 1035–1043. https://doi.org/10.1007/s11590-012-0489-1.
  10. S. Sadiq Basha, Extensions of Banach’s Contraction Principle, Numer. Funct. Anal. Optim. 31 (2010), 569–576. https://doi.org/10.1080/01630563.2010.485713.
  11. S.S. Basha, P. Veeramani, Best Approximations and Best Proximity Pairs, Acta Sci. Math. (Szeged) 63 (1997), 289–300.
  12. S. Sadiq Basha, P. Veeramani, Best Proximity Pair Theorems for Multifunctions with Open Fibres, J. Approx. Theory 103 (2000), 119–129. https://doi.org/10.1006/jath.1999.3415.
  13. K. Fan, Extensions of Two Fixed Point Theorems of F. E. Browder, Math. Z. 112 (1969), 234–240. https://doi.org/10.1007/BF01110225.
  14. A.A. Eldred, W.A. Kirk, P. Veeramani, Proximal Normal Structure and Relatively Nonexpansive Mappings, Stud. Math. 171 (2005), 283–293. https://doi.org/10.4064/sm171-3-5.
  15. A.A. Eldred, P. Veeramani, Existence and Convergence of Best Proximity Points, J. Math. Anal. Appl. 323 (2006), 1001–1006. https://doi.org/10.1016/j.jmaa.2005.10.081.
  16. M.E. Gordji, M. Rameani, M. De La Sen, Y.J. Cho, On Orthogonal Sets and Banach Fixed Point Theorem, Fixed Point Theory 18 (2017), 569–578. https://doi.org/10.24193/fpt-ro.2017.2.45.
  17. M.R. Haddadi, S.M. Moshtaghioun, Some Results on the Best Proximity Pair, Abstr. Appl. Anal. 2011 (2011), 158430. https://doi.org/10.1155/2011/158430.
  18. W.K. Kim, K.H. Lee, Existence of Best Proximity Pairs and Equilibrium Pairs, J. Math. Anal. Appl. 316 (2006), 433–446. https://doi.org/10.1016/j.jmaa.2005.04.053.
  19. W.A. Kirk, S. Reich, P. Veeramani, Proximinal Retracts and Best Proximity Pair Theorems, Numer. Funct. Anal. Optim. 24 (2003), 851–862. https://doi.org/10.1081/NFA-120026380.
  20. V. Pragadeeswarar, M. Marudai, P. Kumam, Best Proximity Point Theorems for Multivalued Mappings on Partially Ordered Metric Spaces, J. Nonlinear Sci. Appl. 9 (2016), 1911–1921.
  21. V. Pragadeeswarar, R. Gopi, Existence of Common Best Proximity Point for Single and Multivalued Non-Self Mappings, Carpathian J. Math. 37 (2021), 273–285. https://www.jstor.org/stable/27082105.
  22. V.S. Raj, P. Veeramani, Best Proximity Pair Theorems for Relatively Nonexpansive Mappings, Appl. Gen.Topol. 10 (2009), 21–28. https://doi.org/10.4995/agt.2009.1784.
  23. V. Sankar Raj, A Best Proximity Point Theorem for Weakly Contractive Non-Self-Mappings, Nonlinear Anal.: Theory Methods Appl. 74 (2011), 4804–4808. https://doi.org/10.1016/j.na.2011.04.052.
  24. P. Srinivasan, P. Veeramani, On Existence of Equilibrium Pair for Constrained Generalized Games, Fixed Point Theory Appl. 2004 (2004), 704376. https://doi.org/10.1155/S1687182004308132.
  25. M. De La Sen, R.P. Agarwal, Some Fixed Point-Type Results for a Class of Extended Cyclic Self-Mappings with a More General Contractive Condition, Fixed Point Theory Appl. 2011 (2011), 59. https://doi.org/10.1186/1687-1812-2011-59.
  26. M. Gabeleh, Proximal Weakly Contractive and Proximal Nonexpansive Non-Self-Mappings in Metric and Banach Spaces, J. Optim. Theory Appl. 158 (2013), 615–625. https://doi.org/10.1007/s10957-012-0246-8.
  27. M. Gabeleh, Best Proximity Points: Global Minimization of Multivalued Non-Self Mappings, Optim. Lett. 8 (2014), 1101–1112. https://doi.org/10.1007/s11590-013-0628-3.
  28. R.K. Sharma, S. Chandok, Multivalued Problems, Orthogonal Mappings, and Fractional Integro-Differential Equation, J. Math. 2020 (2020), 6615478. https://doi.org/10.1155/2020/6615478.