Evaluating the Consistency of Neutrosophic Data Using Various Statistical Distributions: Comparative Studies and Applications

Main Article Content

Abhishek Singh, Eid Sadun Alotaibi, Muhammad Aslam

Abstract

In this paper, we primarily have given neutrosophic coefficient of variation, robust neutrosophic coefficient of variation concern to interquartile range, and robust neutrosophic coefficient of variation concern to median absolute deviation.  Following the introduction, we have explored the methods of neutrosophic coefficient of variation, which is an effective method for modeling data that is fuzzy, imprecise, and uncertain. For the comparative study, we have given numerical studies based on neutrosophic distributions including discrete and continuous distributions. First, we have compared all three neutrosophic coefficient of variations and then have given the comparative study for all neutrosophic distributions for these neutrosophic coefficient of variations. Also, we have given real data analysis on climate data to highlight the impact of the neutrosophic coefficient of variations. We found that neutrosophic coefficient of variations NCV and based on IQR have near about similar values while the neutrosophic coefficient of variation based on MAD has higher values than other two for all samples and distributions. Further, we observe that with increasing the sample values all three neutrosophic coefficients of variations also increase for all the distributions and provide a general framework over classical methods of coefficient of variations, and the graphical representations also clarify this.

Article Details

References

  1. G.F. Reed, F. Lynn, B.D. Meade, Use of Coefficient of Variation in Assessing Variability of Quantitative Assays, Clin. Vaccine Immunol. 10 (2003), 1162-1162. https://doi.org/10.1128/cdli.10.6.1162.2003.
  2. E.G. Miller, M.J. Karson, Testing Equality of Two Coefficients of Variation, in: American Statistical Association: Proceedings of the Business and Economics Section, Part I, Vol. 95, pp. 278-283, (1977).
  3. A.J. Hamer, J.R. Strachan, M.M. Black, C. Ibbotson, R.A. Elson, A New Method of Comparative Bone Strength Measurement, J. Med. Eng. Technol. 19 (1995), 1-5. https://doi.org/10.3109/03091909509030263.
  4. J. Gong, Y. Li, Relationship Between the Estimated Weibull Modulus and the Coefficient of Variation of the Measured Strength for Ceramics, J. Am. Ceram. Soc. 82 (1999), 449-452. https://doi.org/10.1111/j.1551-2916.1999.tb20084.x.
  5. T.J. Cole, Establishing a Standard Definition for Child Overweight and Obesity Worldwide: International Survey, BMJ 320 (2000), 1240-1240. https://doi.org/10.1136/bmj.320.7244.1240.
  6. H.M. Shapiro, Practical Flow Cytometry, John Wiley & Sons, (2005).
  7. F.R. Hampel, The Influence Curve and Its Role in Robust Estimation, J. Am. Stat. Assoc. 69 (1974), 383-393. https://doi.org/10.2307/2285666.
  8. C.N.P.G. Arachchige, L.A. Prendergast, R.G. Staudte, Robust Analogs to the Coefficient of Variation, J. Appl. Stat. 49 (2020), 268-290. https://doi.org/10.1080/02664763.2020.1808599.
  9. F. Smarandache, Introduction to Neutrosophic Statistics, Sitech & Education Publishing, (2014).
  10. J. Chen, J. Ye, S. Du, Scale Effect and Anisotropy Analyzed for Neutrosophic Numbers of Rock Joint Roughness Coefficient Based on Neutrosophic Statistics, Symmetry 9 (2017), 208. https://doi.org/10.3390/sym9100208.
  11. J. Chen, J. Ye, S. Du, R. Yong, Expressions of Rock Joint Roughness Coefficient Using Neutrosophic Interval Statistical Numbers, Symmetry 9 (2017), 123. https://doi.org/10.3390/sym9070123.
  12. A.A. Adepoju, U. Mohammed, S.S. Sani, et al. Statistical Properties of Negative Binomial Distribution under Impressive Observation, J. Nigerian Stat. Assoc. 31 (2019), 1-8.
  13. C. Granados, Some Discrete Neutrosophic Distributions with Neutrosophic Parameters Based on Neutrosophic Random Variables, Hacet. J. Math. Stat. 51 (2022), 1442-1457. https://doi.org/10.15672/hujms.1099081.
  14. C. Granados, A.K. Das, B. Das, Some Continuous Neutrosophic Distributions with Neutrosophic Parameters Based on Neutrosophic Random Variables, Adv. Theory Nonlinear Anal. Appl. 6 (2022), 380-389. https://doi.org/10.31197/atnaa.1056480.
  15. A.A. Alvaracín Jarrín, D.S. Proaño Tamayo, S.A. Montecé Giler, et al. Neutrosophic Statistics Applied in Social Science, Neutrosophic Sets Syst. 44 (2021), 01-09.
  16. Z. Khan, M. Gulistan, N. Kausar, C. Park, Neutrosophic Rayleigh Model with Some Basic Characteristics and Engineering Applications, IEEE Access 9 (2021), 71277-71283. https://doi.org/10.1109/access.2021.3078150.
  17. A. AlAita, M. Aslam, Analysis of Covariance Under Neutrosophic Statistics, J. Stat. Comput. Simul. 93 (2022), 397-415. https://doi.org/10.1080/00949655.2022.2108423.
  18. Ahsan-ul-Haq, M. (2022). Neutrosophic Kumaraswamy distribution with engineering application. Neutrosophic Sets Syst., 49, 269-276.
  19. C. Delcea, A. Domenteanu, C. Ioanăș, V.M. Vargas, A.N. Ciucu-Durnoi, Quantifying Neutrosophic Research: a Bibliometric Study, Axioms 12 (2023), 1083. https://doi.org/10.3390/axioms12121083.
  20. Y. Guo, A. Sengur, Ncm: Neutrosophic C-Means Clustering Algorithm, Pattern Recognit. 48 (2015), 2710-2724. https://doi.org/10.1016/j.patcog.2015.02.018.
  21. H. Garg, Nancy, Algorithms for Single-Valued Neutrosophic Decision Making Based on Topsis and Clustering Methods with New Distance Measure, AIMS Math. 5 (2020), 2671-2693. https://doi.org/10.3934/math.2020173.
  22. Aslam, M. (2023a). Simulating imprecise data: sine–cosine and convolution methods with neutrosophic normal distribution. Journal of Big Data, 10(1), 143.
  23. M. Aslam, Simulating Imprecise Data: Sine–cosine and Convolution Methods with Neutrosophic Normal Distribution, J. Big Data 10 (2023), 143. https://doi.org/10.1186/s40537-023-00822-4.
  24. M. Aslam, Truncated Variable Algorithm Using Dus-Neutrosophic Weibull Distribution, Complex Intell. Syst. 9 (2023), 3107-3114. https://doi.org/10.1007/s40747-022-00912-5.
  25. M. Aslam, Uncertainty-driven Generation of Neutrosophic Random Variates from the Weibull Distribution, J. Big Data 10 (2023), 177. https://doi.org/10.1186/s40537-023-00860-y.
  26. M. Aslam, F.S. Alamri, Algorithm for Generating Neutrosophic Data Using Accept-Reject Method, J. Big Data 10 (2023), 175. https://doi.org/10.1186/s40537-023-00855-9.
  27. Z. Tahir, H. Khan, M. Aslam, J. Shabbir, Y. Mahmood, F. Smarandache, Neutrosophic Ratio-Type Estimators for Estimating the Population Mean, Complex Intell. Syst. 7 (2021), 2991-3001. https://doi.org/10.1007/s40747-021-00439-1.
  28. G.K. Vishwakarma, A. Singh, Generalized Estimator for Computation of Population Mean Under Neutrosophic Ranked Set Technique: An Application to Solar Energy Data, Comput. Appl. Math. 41 (2022), 144. https://doi.org/10.1007/s40314-022-01820-7.
  29. A. Singh, M. Aslam, G.K. Vishwakarma, A. Dhital, I. Patrascu, Neutrosophic Regression Cum Ratio Estimators for the Population Mean: An Application in Medical Science, in: Cognitive Intelligence with Neutrosophic Statistics in Bioinformatics, Elsevier, 2023: pp. 313–333. https://doi.org/10.1016/B978-0-323-99456-9.00018-0.
  30. A. Singh, H. Kulkarni, F. Smarandache, G.K. Vishwakarma, Computation of Separate Ratio and Regression Estimator under Neutrosophic Stratified Sampling: An Application to Climate Data, J. Fuzzy Ext. Appl. 5 (2024), 605-621.
  31. A. Singh, V.G. Patkar, H. Kulkarni, G.K. Vishwakarma, Computation of Separate Product and Ratio Exponential Estimators Under Neutrosophic Stratified Sampling: Application to Climate Data, Research Square (2024). https://doi.org/10.21203/rs.3.rs-5135094/v1.
  32. M.G. Vangel, Confidence Intervals for a Normal Coefficient of Variation, Am. Stat. 50 (1996), 21-26. https://doi.org/10.1080/00031305.1996.10473537.