Continuous Biframes in Hilbert C∗-Modules

Main Article Content

Abdellatif Lfounoune, Abdelilah Karara, Mohamed Rossafi

Abstract

In this paper, we will introduce the concept of a continuous biframe for Hilbert C∗−modules. Then, we examine some characterizations of this biframe with the help of an invertible and adjointable operator is given. Moreover, we study continuous biframe Bessel multiplier and dual continuous biframe in Hilbert C∗−modules. Also, we develop the concept of continuous biframes in the tensor product of two Hilbert C∗-modules over a unital C∗-algebra A and provide some properties of invertible transformed biframes and Bessel multipliers in the tensor product.

Article Details

References

  1. N. Assila, H. Labrigui, A. Touri, M. Rossafi, Integral Operator Frames on Hilbert C ∗ -Modules, Ann. Univ. Ferrara 70 (2024), 1271–1284. https://doi.org/10.1007/s11565-024-00501-z.
  2. I. Daubechies, A. Grossmann, Y. Meyer, Painless Nonorthogonal Expansions, J. Math. Phys. 27 (1986), 1271–1283. https://doi.org/10.1063/1.527388.
  3. K.R. Davidson, C ∗ -Algebras by Example, American Mathematical Society, Providence, 1996.
  4. R.J. Duffin, A.C. Schaeffer, A Class of Nonharmonic Fourier Series, Trans. Amer. Math. Soc. 72 (1952), 341–366. https://doi.org/10.1090/S0002-9947-1952-0047179-6.
  5. R. El Jazzar, R. Mohamed, On Frames in Hilbert Modules Over Locally C ∗ -Algebras, Int. J. Anal. Appl. 21 (2023), 130. https://doi.org/10.28924/2291-8639-21-2023-130.
  6. A. Fereydooni, A. Safapour, Pair Frames, Results Math. 66 (2014), 247–263. https://doi.org/10.1007/s00025-014-0375-5.
  7. M. Frank, D.R. Larson, Frames in Hilbert C ∗ -Modules and C ∗ -Algebras, J. Oper. Theory 48 (2002), 273–314.
  8. D. Gabor, Theory of Communication, J. Inst. Electr. Eng. 93 (1946), 429–441. https://doi.org/10.1049/ji-3-2.1946.0074.
  9. M. Ghiati, M. Rossafi, M. Mouniane, H. Labrigui, A. Touri, Controlled Continuous ∗-g-Frames in Hilbert C ∗ - Modules, J. Pseudo-Differ. Oper. Appl. 15 (2024), 2. https://doi.org/10.1007/s11868-023-00571-1.
  10. A. Karara, M. Rossafi, A. Touri, K-Biframes in Hilbert Spaces, J. Anal. 33 (2025), 235–251. https://doi.org/10.1007/s41478-024-00831-3.
  11. I. Kaplansky, Modules Over Operator Algebras, Amer. J. Math. 75 (1953), 839–858. https://doi.org/10.2307/2372552.
  12. E.C. Lance, Hilbert C ∗ -Modules: A Toolkit for Operator Algebraists, Cambridge University Press, 1995. https://doi.org/10.1017/CBO9780511526206.
  13. A. Lfounoune, R. El Jazzar, K-Frames in Super Hilbert C ∗ -Modules, Int. J. Anal. Appl. 23 (2025), 19. https://doi.org/10.28924/2291-8639-23-2025-19.
  14. A. Lfounoune, H. Massit, A. Karara, M. Rossafi, Sum of G-Frames in Hilbert C ∗ -Modules, Int. J. Anal. Appl. 23 (2025), 64. https://doi.org/10.28924/2291-8639-23-2025-64.
  15. H. Massit, M. Rossafi, C. Park, Some Relations between Continuous Generalized Frames, Afr. Mat. 35 (2024), 12. https://doi.org/10.1007/s13370-023-01157-2.
  16. F. Nhari, R. Echarghaoui, M. Rossafi, K-g-Fusion Frames in Hilbert C ∗ -Modules, Int. J. Anal. Appl. 19 (2021), 836–857. https://doi.org/10.28924/2291-8639-19-2021-836.
  17. E.H. Ouahidi, M. Rossafi, Woven Continuous Generalized Frames in Hilbert C ∗ -Modules, Int. J. Anal. Appl. 23 (2025), 84. https://doi.org/10.28924/2291-8639-23-2025-84.
  18. M.F. Parizi, A. Alijani, M.A. Dehghan, Biframes and Some of Their Properties, J. Inequal. Appl. 2022 (2022), 104. https://doi.org/10.1186/s13660-022-02844-7.
  19. W.L. Paschke, Inner Product Modules Over B ∗ -Algebras, Trans. Amer. Math. Soc. 182 (1973), 443–468. https://doi.org/10.2307/1996542.
  20. M. Rossafi, F. Nhari, Controlled K-g-Fusion Frames in Hilbert C ∗ -Modules, Int. J. Anal. Appl. 20 (2022), 1. https://doi.org/10.28924/2291-8639-20-2022-1.
  21. M. Rossafi, F. Nhari, K-g-Duals in Hilbert C ∗ -Modules, Int. J. Anal. Appl. 20 (2022), 24. https://doi.org/10.28924/2291-8639-20-2022-24.
  22. M. Rossafi, F.D. Nhari, C. Park, S. Kabbaj, Continuous g-Frames with C ∗ -Valued Bounds and Their Properties, Complex Anal. Oper. Theory 16 (2022), 44. https://doi.org/10.1007/s11785-022-01229-4.
  23. M. Rossafi, S. Kabbaj, Generalized Frames for B(H,K), Iran. J. Math. Sci. Inform. 17 (2022), 1–9. https://doi.org/10.52547/ijmsi.17.1.1.
  24. M. Rossafi, M. Ghiati, M. Mouniane, F. Chouchene, A. Touri, S. Kabbaj, Continuous Frame in Hilbert C ∗ -Modules, J. Anal. 31 (2023), 2531–2561. https://doi.org/10.1007/s41478-023-00581-8.
  25. M. Rossafi, F. Nhari, A. Touri, Continuous Generalized Atomic Subspaces for Operators in Hilbert Spaces, J. Anal. 33 (2025), 927–947. https://doi.org/10.1007/s41478-024-00869-3.
  26. M. Rossafi, S. Kabbaj, ∗-K-Operator Frame for End∗ A (H), Asian-Eur. J. Math. 13 (2020), 2050060. https://doi.org/10.1142/S1793557120500606.
  27. M. Rossafi, S. Kabbaj, Operator Frame for End∗ A (H), J. Linear Topol. Algebra 8 (2019), 85–95.
  28. M. Rossafi, S. Kabbaj, ∗-K-g-Frames in Hilbert A-Modules, J. Linear Topol. Algebra 7 (2018), 63–71.
  29. M. Rossafi, S. Kabbaj, ∗-g-Frames in Tensor Products of Hilbert C ∗ -Modules, Ann. Univ. Paedagog. Crac. Stud. Math. 17 (2018), 17–25.
  30. M. Rossafi, K. Mabrouk, M. Ghiati, M. Mouniane, Weaving Operator Frames for B(H), Methods Funct. Anal. Topol. 29 (2023), 111–124.