Continuous Biframes in Hilbert C∗-Modules
Main Article Content
Abstract
In this paper, we will introduce the concept of a continuous biframe for Hilbert C∗−modules. Then, we examine some characterizations of this biframe with the help of an invertible and adjointable operator is given. Moreover, we study continuous biframe Bessel multiplier and dual continuous biframe in Hilbert C∗−modules. Also, we develop the concept of continuous biframes in the tensor product of two Hilbert C∗-modules over a unital C∗-algebra A and provide some properties of invertible transformed biframes and Bessel multipliers in the tensor product.
Article Details
References
- N. Assila, H. Labrigui, A. Touri, M. Rossafi, Integral Operator Frames on Hilbert C ∗ -Modules, Ann. Univ. Ferrara 70 (2024), 1271–1284. https://doi.org/10.1007/s11565-024-00501-z.
- I. Daubechies, A. Grossmann, Y. Meyer, Painless Nonorthogonal Expansions, J. Math. Phys. 27 (1986), 1271–1283. https://doi.org/10.1063/1.527388.
- K.R. Davidson, C ∗ -Algebras by Example, American Mathematical Society, Providence, 1996.
- R.J. Duffin, A.C. Schaeffer, A Class of Nonharmonic Fourier Series, Trans. Amer. Math. Soc. 72 (1952), 341–366. https://doi.org/10.1090/S0002-9947-1952-0047179-6.
- R. El Jazzar, R. Mohamed, On Frames in Hilbert Modules Over Locally C ∗ -Algebras, Int. J. Anal. Appl. 21 (2023), 130. https://doi.org/10.28924/2291-8639-21-2023-130.
- A. Fereydooni, A. Safapour, Pair Frames, Results Math. 66 (2014), 247–263. https://doi.org/10.1007/s00025-014-0375-5.
- M. Frank, D.R. Larson, Frames in Hilbert C ∗ -Modules and C ∗ -Algebras, J. Oper. Theory 48 (2002), 273–314.
- D. Gabor, Theory of Communication, J. Inst. Electr. Eng. 93 (1946), 429–441. https://doi.org/10.1049/ji-3-2.1946.0074.
- M. Ghiati, M. Rossafi, M. Mouniane, H. Labrigui, A. Touri, Controlled Continuous ∗-g-Frames in Hilbert C ∗ - Modules, J. Pseudo-Differ. Oper. Appl. 15 (2024), 2. https://doi.org/10.1007/s11868-023-00571-1.
- A. Karara, M. Rossafi, A. Touri, K-Biframes in Hilbert Spaces, J. Anal. 33 (2025), 235–251. https://doi.org/10.1007/s41478-024-00831-3.
- I. Kaplansky, Modules Over Operator Algebras, Amer. J. Math. 75 (1953), 839–858. https://doi.org/10.2307/2372552.
- E.C. Lance, Hilbert C ∗ -Modules: A Toolkit for Operator Algebraists, Cambridge University Press, 1995. https://doi.org/10.1017/CBO9780511526206.
- A. Lfounoune, R. El Jazzar, K-Frames in Super Hilbert C ∗ -Modules, Int. J. Anal. Appl. 23 (2025), 19. https://doi.org/10.28924/2291-8639-23-2025-19.
- A. Lfounoune, H. Massit, A. Karara, M. Rossafi, Sum of G-Frames in Hilbert C ∗ -Modules, Int. J. Anal. Appl. 23 (2025), 64. https://doi.org/10.28924/2291-8639-23-2025-64.
- H. Massit, M. Rossafi, C. Park, Some Relations between Continuous Generalized Frames, Afr. Mat. 35 (2024), 12. https://doi.org/10.1007/s13370-023-01157-2.
- F. Nhari, R. Echarghaoui, M. Rossafi, K-g-Fusion Frames in Hilbert C ∗ -Modules, Int. J. Anal. Appl. 19 (2021), 836–857. https://doi.org/10.28924/2291-8639-19-2021-836.
- E.H. Ouahidi, M. Rossafi, Woven Continuous Generalized Frames in Hilbert C ∗ -Modules, Int. J. Anal. Appl. 23 (2025), 84. https://doi.org/10.28924/2291-8639-23-2025-84.
- M.F. Parizi, A. Alijani, M.A. Dehghan, Biframes and Some of Their Properties, J. Inequal. Appl. 2022 (2022), 104. https://doi.org/10.1186/s13660-022-02844-7.
- W.L. Paschke, Inner Product Modules Over B ∗ -Algebras, Trans. Amer. Math. Soc. 182 (1973), 443–468. https://doi.org/10.2307/1996542.
- M. Rossafi, F. Nhari, Controlled K-g-Fusion Frames in Hilbert C ∗ -Modules, Int. J. Anal. Appl. 20 (2022), 1. https://doi.org/10.28924/2291-8639-20-2022-1.
- M. Rossafi, F. Nhari, K-g-Duals in Hilbert C ∗ -Modules, Int. J. Anal. Appl. 20 (2022), 24. https://doi.org/10.28924/2291-8639-20-2022-24.
- M. Rossafi, F.D. Nhari, C. Park, S. Kabbaj, Continuous g-Frames with C ∗ -Valued Bounds and Their Properties, Complex Anal. Oper. Theory 16 (2022), 44. https://doi.org/10.1007/s11785-022-01229-4.
- M. Rossafi, S. Kabbaj, Generalized Frames for B(H,K), Iran. J. Math. Sci. Inform. 17 (2022), 1–9. https://doi.org/10.52547/ijmsi.17.1.1.
- M. Rossafi, M. Ghiati, M. Mouniane, F. Chouchene, A. Touri, S. Kabbaj, Continuous Frame in Hilbert C ∗ -Modules, J. Anal. 31 (2023), 2531–2561. https://doi.org/10.1007/s41478-023-00581-8.
- M. Rossafi, F. Nhari, A. Touri, Continuous Generalized Atomic Subspaces for Operators in Hilbert Spaces, J. Anal. 33 (2025), 927–947. https://doi.org/10.1007/s41478-024-00869-3.
- M. Rossafi, S. Kabbaj, ∗-K-Operator Frame for End∗ A (H), Asian-Eur. J. Math. 13 (2020), 2050060. https://doi.org/10.1142/S1793557120500606.
- M. Rossafi, S. Kabbaj, Operator Frame for End∗ A (H), J. Linear Topol. Algebra 8 (2019), 85–95.
- M. Rossafi, S. Kabbaj, ∗-K-g-Frames in Hilbert A-Modules, J. Linear Topol. Algebra 7 (2018), 63–71.
- M. Rossafi, S. Kabbaj, ∗-g-Frames in Tensor Products of Hilbert C ∗ -Modules, Ann. Univ. Paedagog. Crac. Stud. Math. 17 (2018), 17–25.
- M. Rossafi, K. Mabrouk, M. Ghiati, M. Mouniane, Weaving Operator Frames for B(H), Methods Funct. Anal. Topol. 29 (2023), 111–124.