Computational Analysis of Certified Reinforcement Numbers Across Specialized Graph Classes
Main Article Content
Abstract
A certified dominating set D of a graph G is a dominating set in which every vertex in D must have either no neighbors or at least two neighbors in V\D, where V denotes the set of all vertices in G. A certified domination number of G represented by γcer(G) is defined as the smallest size of such a certified dominating set of G. The reinforcement number r(G) is defined to be the cardinality of minimum number of edges F ⊂ E(Gˉ) such that γ(G + F) < γ(G), broadened this parameter to encompass certified domination and we define certified reinforcement number of a graph G, rcer(G) to be the cardinality of the minimum number of edges F ⊂ E(¯G) such that γcer(G + F) < γcer(G) that is minimum number of edges to be added to decrease the certified domination number of G at least by one. In this paper, we characterize the graph G for which rcer(G) = 1 and determine the values of certified reinforcement number for various classes of graphs.
Article Details
References
- A. Abinaya, K. Gomathi, P. Sivagami, R. Ramya, Domination of Graph Theory and its Applications, Int. J. Adv. Eng. Manag. 5 (2023), 741–744.
- V. Ayta{c{c}}, T. Turac{i}, Exponential Domination and Bondage Numbers in Some Graceful Cyclic Structure, Nonlinear Dyn. Syst. Theory 17 (2017), 139–149.
- M. Dettlaff, M. Lemańska, M. Miotk, J. Topp, R. Ziemann, P. Żyliński, Graphs with Equal Domination and Certified Domination Numbers, arXiv:1710.02059 (2017). http://arxiv.org/abs/1710.02059v2.
- M. Dettlaff, M. Lemańska, J. Topp, R. Ziemann, P. Żyliński, Certified Domination, AKCE Int. J. Graphs Comb. 17 (2020), 86–97. https://doi.org/10.1016/j.akcej.2018.09.004.
- E. Enriquez, G. Estrada, C. Loquias, R.J. Bacalso, L. Ocampo, Domination in Fuzzy Directed Graphs, Mathematics 9 (2021), 2143. https://doi.org/10.3390/math9172143.
- J.F. Fink, M.S. Jacobson, L.F. Kinch, J. Roberts, The Bondage Number of a Graph, Discret. Math. 86 (1990), 47–57. https://doi.org/10.1016/0012-365x(90)90348-l.
- B.L. Hartnell, D.F. Rall, Bounds on the Bondage Number of a Graph, Discret. Math. 128 (1994), 173–177. https://doi.org/10.1016/0012-365x(94)90111-2.
- T.W. Haynes, M.A. Henning, A Characterization of Graphs Whose Vertex Set Can Be Partitioned Into a Total Dominating Set and an Independent Dominating Set, Discret. Appl. Math. 358 (2024), 457–467. https://doi.org/10.1016/j.dam.2024.08.008.
- T.W. Haynes, S. Hedetniemi, P. Slater, Fundamentals of Domination in Graphs, CRC Press, 2013. https://doi.org/10.1201/9781482246582.
- F. Harary, Graph Theory (On Demand Printing of 02787), CRC Press, 2018. https://doi.org/10.1201/9780429493768.
- J.R. Blair, W. Goddard, S.T. Hedetniemi, S. Horton, P. Jones, G. Kubicki, On Domination and Reinforcement Numbers in Trees, Discret. Math. 308 (2008), 1165–1175. https://doi.org/10.1016/j.disc.2007.03.067.
- I.S. Hamid, S.A. Prabhavathy, Majority Reinforcement Number, Discret. Math. Algorithms Appl. 08 (2016), 1650014. https://doi.org/10.1142/s1793830916500142.
- A.T. Rolito G. Eballe, R.G. Eballe, Domination Defect for the Join and Corona of Graphs, Appl. Math. Sci. 15 (2021), 615–623. https://doi.org/10.12988/ams.2021.914597.
- G. Muhiuddin, N. Sridharan, D. Al-Kadi, S. Amutha, M.E. Elnair, Reinforcement Number of a Graph with Respect to Half-Domination, J. Math. 2021 (2021), 6689816. https://doi.org/10.1155/2021/6689816.
- G. Navamani, N. Sumathi, Certified Domination Subdivision Number of Trees, NeuroQuantology 20 (2022), 6161–6166.
- S.D. Raj, S.G.S. Kumari, Certified Domination Number in Product of Graphs, Turk. J. Comput. Math. Educ. 11 (2020), 1166–1170.
- S.D. Raj, S.G.S. Kumari, A.M. Anto, Certified Domination Number in Subdivision of Graphs, Int. J. Mech. Eng. 6 (2021), 4324–4327.
- H.A. Ahangar, J. Amjadi, M. Chellali, S. Nazari-Moghaddam, S.M. Sheikholeslami, Total Roman Reinforcement in Graphs, Discuss. Math. Graph Theory 39 (2019), 787–803. https://doi.org/10.7151/dmgt.2108.
- J. Kok, C.M. Mynhardt, Reinforcement in Graphs, Congr. Numer. 79 (1990), 225–231.
- G. Navamani, Certified Bondage Number for Circulant Graphs, Adv. Nonlinear Var. Inequal. 28 (2024), 501–509. https://doi.org/10.52783/anvi.v28.3119.