A Novel Approach to Fractal Generation through Strong Coupled Fixed Points in Intuitionistic Fuzzy Metric Spaces

Main Article Content

Khaleel Ahmad, Ghulam Murtaza, Umar Ishtiaq, Salvatore Sessa

Abstract

In this manuscript, we explore the concept of strong-coupled fixed points in the context of intuitionistic fuzzy metric spaces (IFMS). Our approach is grounded in the idea of intuitionistic fuzzy contractive couplings (IFCCs), which provide a framework for understanding fixed points in fuzzy settings. We begin by introducing a novel formulation of coupling, which combines the principles of coupled fuzzy contractions with cyclic mappings. This combination leads to a more generalized and effective method of identifying strong-coupled fixed points, extending previous results in fuzzy metric spaces. A key contribution to this paper is the proof of the existence of a unique strong-coupled fixed point. We establish this result through rigorous theoretical analysis and provide a corollary that strengthens the foundation of our work. Several non-trivial examples are presented to demonstrate the applicability of the theory and the robustness of the strong-coupled fixed point in various scenarios. Additionally, we present a practical application of our findings: the construction of a strong-coupled fractal set within the framework of intuitionistic fuzzy metric spaces. This is achieved by applying an intuitionistic iterated function system (IIFS), which is based on a family of intuitionistic fuzzy contractive couplings. The fractal generation process is illustrated through several examples, demonstrating the theoretical results in action. To further solidify the applicability of our approach, we introduce an intuitionistic fuzzy version of the Hausdorff distance between compact sets, a crucial tool in measuring the "closeness" of sets within the intuitionistic fuzzy context. Several examples are provided to clarify the fractal generation process, showing how the intuitionistic fuzzy metrics and couplings contribute to the creation of self-similar fractals. This work not only enhances the understanding of fixed points in intuitionistic fuzzy spaces but also provides new insights into their application in fractal geometry, offering both theoretical advancements and practical tools for future research in this area.

Article Details

References

  1. J.E. Hutchinson, Fractals and Self-Similarity, Indiana Univ. Math. J. 30 (1981), 713-747. https://www.jstor.org/stable/24893080.
  2. M. Rajkumar, R. Uthayakumar, Fractal Transforms for Fuzzy Valued Images, Int. J. Nonlinear Anal. Appl. 12 (2021), 856-868.
  3. L. Zadeh, Fuzzy Sets, Inf. Control. 8 (1965), 338-353. https://doi.org/10.1016/s0019-9958(65)90241-x.
  4. A. George, P. Veeramani, On Some Results in Fuzzy Metric Spaces, Fuzzy Sets Syst. 64 (1994), 395-399. https://doi.org/10.1016/0165-0114(94)90162-7.
  5. I. Kramosil, J. Michálek, Fuzzy Metrics and Statistical Metric Spaces, Kybernetika 11 (1975), 336-344. https://eudml.org/doc/28711.
  6. J.H. Park, Intuitionistic Fuzzy Metric Spaces, Chaos Solitons Fractals 22 (2004), 1039-1046. https://doi.org/10.1016/j.chaos.2004.02.051.
  7. D. Çoker, An Introduction to Intuitionistic Fuzzy Topological Spaces, Fuzzy Sets Syst. 88 (1997), 81-89. https://doi.org/10.1016/s0165-0114(96)00076-0.
  8. R. Saadati, J.H. Park, On the Intuitionistic Fuzzy Topological Spaces, Chaos Solitons Fractals 27 (2006), 331-344. https://doi.org/10.1016/j.chaos.2005.03.019.
  9. F. Uddin, S. Muhammad, A. Khaleel, U. Ishtiaq, S. Sessa, Fixed Point Theorems in Orthogonal Intuitionistic Fuzzy b-Metric Spaces with an Application to Fredholm Integral Equation, Trans. Fuzzy Sets Syst. 3 (2024), 1-22. https://doi.org/https://doi.org/10.71602/tfss.2024.1119656.
  10. M. Mursaleen, S. Mohiuddine, On Lacunary Statistical Convergence with Respect to the Intuitionistic Fuzzy Normed Space, J. Comput. Appl. Math. 233 (2009), 142-149. https://doi.org/10.1016/j.cam.2009.07.005.
  11. U. Ishtiaq, N. Saleem, F. Uddin, S. Sessa, K. Ahmad, F. di Martino, Graphical Views of Intuitionistic Fuzzy Double-Controlled Metric-Like Spaces and Certain Fixed-Point Results with Application, Symmetry 14 (2022), 2364. https://doi.org/10.3390/sym14112364.
  12. K.E. Kadhm, S.M. Khalil, N.A. Hussein, Some Results on Intuitionistic E-Algebra Fuzzy Metric Like Spaces, in: International Conference on Medical Imaging, Electronic Imaging, Information Technologies, and Sensors (MIEITS 2024), SPIE, 2024, pp. 17. https://doi.org/10.1117/12.3030816.
  13. R. Saadati, S.M. Vaezpour, Some Results on Fuzzy Banach Spaces, J. Appl. Math. Comput. 17 (2005), 475-484. https://doi.org/10.1007/bf02936069.
  14. S. Pandit, A. Ahmad, A. Esi, On Intuitionistic Fuzzy Metric Space and Ideal Convergence of Triple Sequence Space, Sahand Commun. Math. Anal. 20 (2023), 35-44. https://doi.org/10.22130/scma.2022.550062.1071.
  15. C. Yan, J. Fang, Generalization of Kolmogoroff's Theorem to L-Topological Vector Spaces, Fuzzy Sets Syst. 125 (2002), 177-183. https://doi.org/10.1016/s0165-0114(01)00045-8.
  16. G. Deschrijver, D. O’Regan, R. Saadati, S. Mansour Vaezpour, L-fuzzy Euclidean Normed Spaces and Compactness, Chaos Solitons Fractals 42 (2009), 40-45. https://doi.org/10.1016/j.chaos.2008.10.026.
  17. B. Schweizer, A. Sklar, Statistical Metric Spaces, Pac. J. Math. 10 (1960), 313-334.
  18. A. George, P. Veeramani, On Some Results in Fuzzy Metric Spaces, Fuzzy Sets Syst. 64 (1994), 395-399. https://doi.org/10.1016/0165-0114(94)90162-7.
  19. J. Rodrı́guez-López, S. Romaguera, The Hausdorff Fuzzy Metric on Compact Sets, Fuzzy Sets Syst. 147 (2004), 273-283. https://doi.org/10.1016/j.fss.2003.09.007.
  20. T.G. Bhaskar, V. Lakshmikantham, Fixed Point Theorems in Partially Ordered Metric Spaces and Applications, Nonlinear Anal.: Theory Methods Appl. 65 (2006), 1379-1393. https://doi.org/10.1016/j.na.2005.10.017.
  21. W.A. Kirk, P.S. Srinivasan, P. Veeramani, Fixed Points for Mappings Satisfying Cyclic Contractive Conditions, Fixed Point Theory 4 (2003), 79-89.
  22. B.S. Choudhury, P. Chakraborty, Strong Fixed Points of Φ-Couplings and Generation of Fractals, Chaos Solitons Fractals 163 (2022), 112514. https://doi.org/10.1016/j.chaos.2022.112514.
  23. C. Alaca, I. Altun, D. Turkoglu, On Compatible Mappings of Type (I) and (II) in Intuitionistic Fuzzy Metric Spaces, Commun. Korean Math. Soc. 23 (2008), 427-446.
  24. K. Ahmad, U. Ishtiaq, G. Murtaza, I. Popa, F.M. Maiz, On Product Neutrosophic Fractal Spaces and Α-Density Theory with Arbitrarily Small and Controlled Error, Fractal Fract. 9 (2025), 59. https://doi.org/10.3390/fractalfract9020059.
  25. F. Uddin, U. Ishtiaq, A. Hussain, K. Javed, H. Al Sulami, K. Ahmed, Neutrosophic Double Controlled Metric Spaces and Related Results with Application, Fractal Fract. 6 (2022), 318. https://doi.org/10.3390/fractalfract6060318.
  26. M. Saeed, U. Ishtiaq, D.A. Kattan, K. Ahmad, S. Sessa, New Fixed Point Results in Neutrosophic B-Metric Spaces with Application, Int. J. Anal. Appl. 21 (2023), 73. https://doi.org/10.28924/2291-8639-21-2023-73.
  27. H. Efe, C. Yildiz, On the Hausdorff Intuitionistic Fuzzy Metric on Compact Sets, Int. J. Pure Appl. Math. 31 (2006), 143-155.