Determination of Sub-Diffusion Process and Source Term from Nonlocal Data: Applications to Microwave Radiations

Main Article Content

Ilyas Khan, Arifa Samreen, Saqib Zia, Ansar Javed, Wei Sin Koh

Abstract

We investigate two inverse problems (IPs) for the time fractional diffusion equation (TFDE) with an involution. The determination of a space varying source term, along with solution of a diffusion equation containing n fractional order derivatives in Caputo’s sense from extra data at a specific time, constitutes the first IP. The second IP investigates the extracting of a time varying source term as well as the solution of the TFDE from non-local type extra condition. The second IP has applications to microwave radiations. The existence and uniqueness results for the solutions of both IPs are presented.

Article Details

References

  1. M.A. Sadybekov, G. Dildabek, M.B. Ivanova, On an Inverse Problem of Reconstructing a Heat Conduction Process from Nonlocal Data, Adv. Math. Phys. 2018 (2018), 8301656. https://doi.org/10.1155/2018/8301656.
  2. A. Cabada, A.F. Tojo, Equations With Involutions, in: Workshop on Differential Equations 2014, Malá Morávka, Czech Republic, (2014).
  3. M. Kirane, M.A. Sadybekov, A.A. Sarsenbi, On an Inverse Problem of Reconstructing a Subdiffusion Process From Nonlocal Data, Math. Methods Appl. Sci. 42 (2019), 2043–2052. https://doi.org/10.1002/mma.5498.
  4. L. Salari, L. Rondoni, C. Giberti, R. Klages, A Simple Non-Chaotic Map Generating Subdiffusive, Diffusive, and Superdiffusive Dynamics, Chaos 25 (2015), 073113. https://doi.org/10.1063/1.4926621.
  5. G. H. Weiss, Aspects and Applications of the Random Walk, North-Holland, New York, 1994.
  6. B.D. Hughes, Random Walks and Random Environments, Clarendon Press, Oxford, 2002.
  7. A. Mura, G. Pagnini, Characterizations and Simulations of a Class of Stochastic Processes to Model Anomalous Diffusion, J. Phys.: Math. Theor. 41 (2008), 285003. https://doi.org/10.1088/1751-8113/41/28/285003.
  8. E. Nadal, E. Abisset-Chavanne, E. Cueto, F. Chinesta, On the Physical Interpretation of Fractional Diffusion, C. R. Mécanique 346 (2018), 581–589. https://doi.org/10.1016/j.crme.2018.04.004.
  9. P. Paradisi, Fractional Calculus in Statistical Physics: The Case of Time Fractional Diffusion Equation, Commun. Appl. Ind. Math. 6 (2015), e-530.
  10. R. Gorenflo, F. Mainardi, D. Moretti, P. Paradisi, Time Fractional Diffusion: a Discrete Random Walk Approach, Nonlinear Dyn. 29 (2002), 129–143. https://doi.org/10.1023/a:1016547232119.
  11. E. Bakalis, F. Zerbetto, Time Fractional Diffusion Equations and Analytical Solvable Models, J. Phys.: Conf. Ser. 738 (2016), 012106. https://doi.org/10.1088/1742-6596/738/1/012106.
  12. B. Baeumer, M. Kovács, M.M. Meerschaert, H. Sankaranarayanan, Reprint of: Boundary Conditions for Fractional Diffusion, J. Comput. Appl. Math. 339 (2018), 414–430. https://doi.org/10.1016/j.cam.2018.03.007.
  13. E. Bakalis, F. Zerbetto, Time Fractional Diffusion Equations and Analytical Solvable Models, J. Phys.: Conf. Ser. 738 (2016), 012106. https://doi.org/10.1088/1742-6596/738/1/012106.
  14. N. Shieh, On Time-Fractional Relativistic Diffusion Equations, J. Pseudo-Differential Oper. Appl. 3 (2012), 229–237. https://doi.org/10.1007/s11868-012-0049-6.
  15. B. Ahmad, A. Alsaedi, M. Kirane, R.G. Tapdigoglu, An Inverse Problem for Space and Time Fractional Evolution Equations with an Involution Perturbation, Quaest. Math. 40 (2017), 151–160. https://doi.org/10.2989/16073606.2017.1283370.
  16. F.G. Waqar, S. Patel, C.M. Simon, A Tutorial on the Bayesian Statistical Approach to Inverse Problems, arXiv:2304.07610 (2023). https://doi.org/10.48550/ARXIV.2304.07610.
  17. I.A. Kaliev, M.M. Sabitova, Problems of Determining the Temperature and Density of Heat Sources From the Initial and Final Temperatures, J. Appl. Ind. Math. 4 (2010), 332–339. https://doi.org/10.1134/s199047891003004x.
  18. M. Kirane, S.A. Malik, M.A. Al‐Gwaiz, An Inverse Source Problem for a Two Dimensional Time Fractional Diffusion Equation with Nonlocal Boundary Conditions, Math. Methods Appl. Sci. 36 (2012), 1056–1069. https://doi.org/10.1002/mma.2661.
  19. M. Kirane, S.A. Malik, Determination of an Unknown Source Term and the Temperature Distribution for the Linear Heat Equation Involving Fractional Derivative in Time, Appl. Math. Comput. 218 (2011), 163–170. https://doi.org/10.1016/j.amc.2011.05.084.
  20. J. Wen, X. Ren, S. Wang, Simultaneous Determination of Source Term and the Initial Value in the Space-Fractional Diffusion Problem by a Novel Modified Quasi-Reversibility Regularization Method, Phys. Scr. 98 (2023), 025201. https://doi.org/10.1088/1402-4896/acaa68.
  21. J. Wen, Z. Liu, S. Wang, Conjugate Gradient Method for Simultaneous Identification of the Source Term and Initial Data in a Time-Fractional Diffusion Equation, Appl. Math. Sci. Eng. 30 (2022), 324–338. https://doi.org/10.1080/27690911.2022.2075358.
  22. J. Wen, Z. Liu, S. Wang, A Non-Stationary Iterative Tikhonov Regularization Method for Simultaneous Inversion in a Time-Fractional Diffusion Equation, J. Comput. Appl. Math. 426 (2023), 115094. https://doi.org/10.1016/j.cam.2023.115094.
  23. J. Wen, Y. Wang, The Quasi-Reversibility Regularization Method for Backward Problems of the Time-Fractional Diffusion-Wave Equation, Phys. Scr. 98 (2023), 095250. https://doi.org/10.1088/1402-4896/acf0f8.
  24. T. Wei, K. Liao, Identifying a Time-Dependent Zeroth-Order Coefficient in a Time-Fractional Diffusion-Wave Equation by Using the Measured Data at a Boundary Point, Appl. Anal. 101 (2021), 6522–6547. https://doi.org/10.1080/00036811.2021.1932834.
  25. T. Wei, Y. Zhang, D. Gao, Identification of the Zeroth‐Order Coefficient and Fractional Order in a Time‐fractional Reaction‐diffusion‐wave Equation, Math. Methods Appl. Sci. 46 (2022), 142–166. https://doi.org/10.1002/mma.8499.
  26. Z. Ruan, Q. Hu, W. Zhang, Identification of a Time-Dependent Control Parameter for a Stochastic Diffusion Equation, Comput. Appl. Math. 40 (2021), 201. https://doi.org/10.1007/s40314-021-01598-0.
  27. Z. Ruan, Z. Wang, A Backward Problem for Distributed Order Diffusion Equation: Uniqueness and Numerical Solution, Inverse Probl. Sci. Eng. 29 (2020), 418–439. https://doi.org/10.1080/17415977.2020.1795152.
  28. A. Ashyralyev, A. Sarsenbi, Well-posedness of a Parabolic Equation with Nonlocal Boundary Condition, Bound. Value Probl. 2015 (2015), 38. https://doi.org/10.1186/s13661-015-0297-5.
  29. M. Kirane, N. Al-Salti, Inverse Problems for a Nonlocal Wave Equation with an Involution Perturbation, J. Nonlinear Sci. Appl. 09 (2016), 1243–1251. https://doi.org/10.22436/jnsa.009.03.49.
  30. A. Ashyralyev, A. Sarsenbi, Well-posedness of a Parabolic Equation with Involution, Numer. Funct. Anal. Optim. 38 (2017), 1295–1304. https://doi.org/10.1080/01630563.2017.1316997.
  31. N.H. Tuan, M. Kirane, L.V.C. Hoan, L.D. Long, Identification and Regularization for Unknown Source for a Time-Fractional Diffusion Equation, Comput. Math. Appl. 73 (2017), 931–950. https://doi.org/10.1016/j.camwa.2016.10.002.
  32. I. Orazov, M.A. Sadybekov, On a Class of Problems of Determining the Temperature and Density of Heat Sources Given Initial and Final Temperature, Sib. Math. J. 53 (2012), 146–151. https://doi.org/10.1134/s0037446612010120.
  33. N.I. Ivanchov, Inverse Problems for the Heat-Conduction Equation with Nonlocal Boundary Conditions, Ukr. Math. J. 45 (1993), 1186–1192. https://doi.org/10.1007/bf01070965.
  34. I.A. Kaliev, M.F. Mugafarov, O.V. Fattahova, Inverse Problem for Forward-Backward Parabolic Equation With Generalized Conjugation Conditions, Ufa Math. J. 3 (2011), 33–41.
  35. F. Kanca, M.I. Ismailov, The Inverse Problem of Finding the Time-Dependent Diffusion Coefficient of the Heat Equation From Integral Overdetermination Data, Inverse Probl. Sci. Eng. 20 (2011), 463–476. https://doi.org/10.1080/17415977.2011.629093.
  36. A.B. Kostin, Counterexamples in Inverse Problems for Parabolic, Elliptic, and Hyperbolic Equations, Comput. Math. Math. Phys. 54 (2014), 797–810. https://doi.org/10.1134/s0965542514020092.
  37. F. Kanca, Inverse Coefficient Problem of the Parabolic Equation with Periodic Boundary and Integral Overdetermination Conditions, Abstr. Appl. Anal. 2013 (2013), 659804. https://doi.org/10.1155/2013/659804.
  38. D. Lesnic, S.A. Yousefi, M. Ivanchov, Determination of a Time-Dependent Diffusivity From Nonlocal Conditions, J. Appl. Math. Comput. 41 (2012), 301–320. https://doi.org/10.1007/s12190-012-0606-4.
  39. L. Miller, M. Yamamoto, Coefficient Inverse Problem for a Fractional Diffusion Equation, Inverse Probl. 29 (2013), 075013. https://doi.org/10.1088/0266-5611/29/7/075013.
  40. G. Li, D. Zhang, X. Jia, M. Yamamoto, Simultaneous Inversion for the Space-Dependent Diffusion Coefficient and the Fractional Order in the Time-Fractional Diffusion Equation, Inverse Probl. 29 (2013), 065014. https://doi.org/10.1088/0266-5611/29/6/065014.
  41. N.H. Tuan, D.N.D. Hai, L.D. Long, V.T. Nguyen, M. Kirane, On a Riesz–feller Space Fractional Backward Diffusion Problem with a Nonlinear Source, J. Comput. Appl. Math. 312 (2017), 103–126. https://doi.org/10.1016/j.cam.2016.01.003.
  42. , Existence Results on Mittag-Leffler Kernel of Fractional Integro-Differential Inclusion Problem Under Boundary Conditions, Prog. Fract. Differ. Appl. 10 (2024), 149–160. https://doi.org/10.18576/pfda/100114.
  43. A. Erdogan, D. Kusmangazinova, I. Orazov, M. Sadybekov, On One Problem for Restoring the Density of Sources of the Fractional Heat Conductivity Process with Respect to Initial and Final Temperatures, Bull. Karaganda Univ. Math. 91 (2018), 31–44. https://doi.org/10.31489/2018m3/31-44.
  44. M. Kirane, B. Samet, B.T. Torebek, Determination of an Unknown Source Term Temperature Distribution for the Sub-Diffusion Equation at the Initial and Final Data, Electron. J. Differ. Equ. 2017 (2017), 257.
  45. O. Taki-Eddine, B. Abdelfatah, On Determining the Coefficient in a Parabolic Equation With Nonlocal Boundary and Integral Condition, Electron. J. Math. Anal. Appl. 6 (2018), 94–102.
  46. M. Ali, S. Aziz, S.A. Malik, Inverse Problem for a Space‐time Fractional Diffusion Equation: Application of Fractional Sturm‐liouville Operator, Math. Methods Appl. Sci. 41 (2018), 2733–2747. https://doi.org/10.1002/mma.4776.
  47. S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, 1993.
  48. Y. Luchko, R. Gorenflo, An Operational Method for Solving Fractional Differential Equations With the Caputo Derivatives, Acta Math. Vietnam 24 (1999), 207–233.
  49. Z. Li, Y. Liu, M. Yamamoto, Initial-boundary Value Problems for Multi-Term Time-Fractional Diffusion Equations with Positive Constant Coefficients, Appl. Math. Comput. 257 (2015), 381–397. https://doi.org/10.1016/j.amc.2014.11.073.
  50. S.A. Malik, A. Ilyas, A. Samreen, Simultaneous Determination of a Source Term and Diffusion Concentration for a Multi-Term Space-Time Fractional Diffusion Equation, Math. Model. Anal. 26 (2021), 411–431. https://doi.org/10.3846/mma.2021.11911.
  51. M. Ali, S. Aziz, S.A. Malik, Inverse Source Problems for a Space–time Fractional Differential Equation, Inverse Probl. Sci. Eng. 28 (2019), 47–68. https://doi.org/10.1080/17415977.2019.1597079.