Determination of Sub-Diffusion Process and Source Term from Nonlocal Data: Applications to Microwave Radiations
Main Article Content
Abstract
We investigate two inverse problems (IPs) for the time fractional diffusion equation (TFDE) with an involution. The determination of a space varying source term, along with solution of a diffusion equation containing n fractional order derivatives in Caputo’s sense from extra data at a specific time, constitutes the first IP. The second IP investigates the extracting of a time varying source term as well as the solution of the TFDE from non-local type extra condition. The second IP has applications to microwave radiations. The existence and uniqueness results for the solutions of both IPs are presented.
Article Details
References
- M.A. Sadybekov, G. Dildabek, M.B. Ivanova, On an Inverse Problem of Reconstructing a Heat Conduction Process from Nonlocal Data, Adv. Math. Phys. 2018 (2018), 8301656. https://doi.org/10.1155/2018/8301656.
- A. Cabada, A.F. Tojo, Equations With Involutions, in: Workshop on Differential Equations 2014, Malá Morávka, Czech Republic, (2014).
- M. Kirane, M.A. Sadybekov, A.A. Sarsenbi, On an Inverse Problem of Reconstructing a Subdiffusion Process From Nonlocal Data, Math. Methods Appl. Sci. 42 (2019), 2043–2052. https://doi.org/10.1002/mma.5498.
- L. Salari, L. Rondoni, C. Giberti, R. Klages, A Simple Non-Chaotic Map Generating Subdiffusive, Diffusive, and Superdiffusive Dynamics, Chaos 25 (2015), 073113. https://doi.org/10.1063/1.4926621.
- G. H. Weiss, Aspects and Applications of the Random Walk, North-Holland, New York, 1994.
- B.D. Hughes, Random Walks and Random Environments, Clarendon Press, Oxford, 2002.
- A. Mura, G. Pagnini, Characterizations and Simulations of a Class of Stochastic Processes to Model Anomalous Diffusion, J. Phys.: Math. Theor. 41 (2008), 285003. https://doi.org/10.1088/1751-8113/41/28/285003.
- E. Nadal, E. Abisset-Chavanne, E. Cueto, F. Chinesta, On the Physical Interpretation of Fractional Diffusion, C. R. Mécanique 346 (2018), 581–589. https://doi.org/10.1016/j.crme.2018.04.004.
- P. Paradisi, Fractional Calculus in Statistical Physics: The Case of Time Fractional Diffusion Equation, Commun. Appl. Ind. Math. 6 (2015), e-530.
- R. Gorenflo, F. Mainardi, D. Moretti, P. Paradisi, Time Fractional Diffusion: a Discrete Random Walk Approach, Nonlinear Dyn. 29 (2002), 129–143. https://doi.org/10.1023/a:1016547232119.
- E. Bakalis, F. Zerbetto, Time Fractional Diffusion Equations and Analytical Solvable Models, J. Phys.: Conf. Ser. 738 (2016), 012106. https://doi.org/10.1088/1742-6596/738/1/012106.
- B. Baeumer, M. Kovács, M.M. Meerschaert, H. Sankaranarayanan, Reprint of: Boundary Conditions for Fractional Diffusion, J. Comput. Appl. Math. 339 (2018), 414–430. https://doi.org/10.1016/j.cam.2018.03.007.
- E. Bakalis, F. Zerbetto, Time Fractional Diffusion Equations and Analytical Solvable Models, J. Phys.: Conf. Ser. 738 (2016), 012106. https://doi.org/10.1088/1742-6596/738/1/012106.
- N. Shieh, On Time-Fractional Relativistic Diffusion Equations, J. Pseudo-Differential Oper. Appl. 3 (2012), 229–237. https://doi.org/10.1007/s11868-012-0049-6.
- B. Ahmad, A. Alsaedi, M. Kirane, R.G. Tapdigoglu, An Inverse Problem for Space and Time Fractional Evolution Equations with an Involution Perturbation, Quaest. Math. 40 (2017), 151–160. https://doi.org/10.2989/16073606.2017.1283370.
- F.G. Waqar, S. Patel, C.M. Simon, A Tutorial on the Bayesian Statistical Approach to Inverse Problems, arXiv:2304.07610 (2023). https://doi.org/10.48550/ARXIV.2304.07610.
- I.A. Kaliev, M.M. Sabitova, Problems of Determining the Temperature and Density of Heat Sources From the Initial and Final Temperatures, J. Appl. Ind. Math. 4 (2010), 332–339. https://doi.org/10.1134/s199047891003004x.
- M. Kirane, S.A. Malik, M.A. Al‐Gwaiz, An Inverse Source Problem for a Two Dimensional Time Fractional Diffusion Equation with Nonlocal Boundary Conditions, Math. Methods Appl. Sci. 36 (2012), 1056–1069. https://doi.org/10.1002/mma.2661.
- M. Kirane, S.A. Malik, Determination of an Unknown Source Term and the Temperature Distribution for the Linear Heat Equation Involving Fractional Derivative in Time, Appl. Math. Comput. 218 (2011), 163–170. https://doi.org/10.1016/j.amc.2011.05.084.
- J. Wen, X. Ren, S. Wang, Simultaneous Determination of Source Term and the Initial Value in the Space-Fractional Diffusion Problem by a Novel Modified Quasi-Reversibility Regularization Method, Phys. Scr. 98 (2023), 025201. https://doi.org/10.1088/1402-4896/acaa68.
- J. Wen, Z. Liu, S. Wang, Conjugate Gradient Method for Simultaneous Identification of the Source Term and Initial Data in a Time-Fractional Diffusion Equation, Appl. Math. Sci. Eng. 30 (2022), 324–338. https://doi.org/10.1080/27690911.2022.2075358.
- J. Wen, Z. Liu, S. Wang, A Non-Stationary Iterative Tikhonov Regularization Method for Simultaneous Inversion in a Time-Fractional Diffusion Equation, J. Comput. Appl. Math. 426 (2023), 115094. https://doi.org/10.1016/j.cam.2023.115094.
- J. Wen, Y. Wang, The Quasi-Reversibility Regularization Method for Backward Problems of the Time-Fractional Diffusion-Wave Equation, Phys. Scr. 98 (2023), 095250. https://doi.org/10.1088/1402-4896/acf0f8.
- T. Wei, K. Liao, Identifying a Time-Dependent Zeroth-Order Coefficient in a Time-Fractional Diffusion-Wave Equation by Using the Measured Data at a Boundary Point, Appl. Anal. 101 (2021), 6522–6547. https://doi.org/10.1080/00036811.2021.1932834.
- T. Wei, Y. Zhang, D. Gao, Identification of the Zeroth‐Order Coefficient and Fractional Order in a Time‐fractional Reaction‐diffusion‐wave Equation, Math. Methods Appl. Sci. 46 (2022), 142–166. https://doi.org/10.1002/mma.8499.
- Z. Ruan, Q. Hu, W. Zhang, Identification of a Time-Dependent Control Parameter for a Stochastic Diffusion Equation, Comput. Appl. Math. 40 (2021), 201. https://doi.org/10.1007/s40314-021-01598-0.
- Z. Ruan, Z. Wang, A Backward Problem for Distributed Order Diffusion Equation: Uniqueness and Numerical Solution, Inverse Probl. Sci. Eng. 29 (2020), 418–439. https://doi.org/10.1080/17415977.2020.1795152.
- A. Ashyralyev, A. Sarsenbi, Well-posedness of a Parabolic Equation with Nonlocal Boundary Condition, Bound. Value Probl. 2015 (2015), 38. https://doi.org/10.1186/s13661-015-0297-5.
- M. Kirane, N. Al-Salti, Inverse Problems for a Nonlocal Wave Equation with an Involution Perturbation, J. Nonlinear Sci. Appl. 09 (2016), 1243–1251. https://doi.org/10.22436/jnsa.009.03.49.
- A. Ashyralyev, A. Sarsenbi, Well-posedness of a Parabolic Equation with Involution, Numer. Funct. Anal. Optim. 38 (2017), 1295–1304. https://doi.org/10.1080/01630563.2017.1316997.
- N.H. Tuan, M. Kirane, L.V.C. Hoan, L.D. Long, Identification and Regularization for Unknown Source for a Time-Fractional Diffusion Equation, Comput. Math. Appl. 73 (2017), 931–950. https://doi.org/10.1016/j.camwa.2016.10.002.
- I. Orazov, M.A. Sadybekov, On a Class of Problems of Determining the Temperature and Density of Heat Sources Given Initial and Final Temperature, Sib. Math. J. 53 (2012), 146–151. https://doi.org/10.1134/s0037446612010120.
- N.I. Ivanchov, Inverse Problems for the Heat-Conduction Equation with Nonlocal Boundary Conditions, Ukr. Math. J. 45 (1993), 1186–1192. https://doi.org/10.1007/bf01070965.
- I.A. Kaliev, M.F. Mugafarov, O.V. Fattahova, Inverse Problem for Forward-Backward Parabolic Equation With Generalized Conjugation Conditions, Ufa Math. J. 3 (2011), 33–41.
- F. Kanca, M.I. Ismailov, The Inverse Problem of Finding the Time-Dependent Diffusion Coefficient of the Heat Equation From Integral Overdetermination Data, Inverse Probl. Sci. Eng. 20 (2011), 463–476. https://doi.org/10.1080/17415977.2011.629093.
- A.B. Kostin, Counterexamples in Inverse Problems for Parabolic, Elliptic, and Hyperbolic Equations, Comput. Math. Math. Phys. 54 (2014), 797–810. https://doi.org/10.1134/s0965542514020092.
- F. Kanca, Inverse Coefficient Problem of the Parabolic Equation with Periodic Boundary and Integral Overdetermination Conditions, Abstr. Appl. Anal. 2013 (2013), 659804. https://doi.org/10.1155/2013/659804.
- D. Lesnic, S.A. Yousefi, M. Ivanchov, Determination of a Time-Dependent Diffusivity From Nonlocal Conditions, J. Appl. Math. Comput. 41 (2012), 301–320. https://doi.org/10.1007/s12190-012-0606-4.
- L. Miller, M. Yamamoto, Coefficient Inverse Problem for a Fractional Diffusion Equation, Inverse Probl. 29 (2013), 075013. https://doi.org/10.1088/0266-5611/29/7/075013.
- G. Li, D. Zhang, X. Jia, M. Yamamoto, Simultaneous Inversion for the Space-Dependent Diffusion Coefficient and the Fractional Order in the Time-Fractional Diffusion Equation, Inverse Probl. 29 (2013), 065014. https://doi.org/10.1088/0266-5611/29/6/065014.
- N.H. Tuan, D.N.D. Hai, L.D. Long, V.T. Nguyen, M. Kirane, On a Riesz–feller Space Fractional Backward Diffusion Problem with a Nonlinear Source, J. Comput. Appl. Math. 312 (2017), 103–126. https://doi.org/10.1016/j.cam.2016.01.003.
- , Existence Results on Mittag-Leffler Kernel of Fractional Integro-Differential Inclusion Problem Under Boundary Conditions, Prog. Fract. Differ. Appl. 10 (2024), 149–160. https://doi.org/10.18576/pfda/100114.
- A. Erdogan, D. Kusmangazinova, I. Orazov, M. Sadybekov, On One Problem for Restoring the Density of Sources of the Fractional Heat Conductivity Process with Respect to Initial and Final Temperatures, Bull. Karaganda Univ. Math. 91 (2018), 31–44. https://doi.org/10.31489/2018m3/31-44.
- M. Kirane, B. Samet, B.T. Torebek, Determination of an Unknown Source Term Temperature Distribution for the Sub-Diffusion Equation at the Initial and Final Data, Electron. J. Differ. Equ. 2017 (2017), 257.
- O. Taki-Eddine, B. Abdelfatah, On Determining the Coefficient in a Parabolic Equation With Nonlocal Boundary and Integral Condition, Electron. J. Math. Anal. Appl. 6 (2018), 94–102.
- M. Ali, S. Aziz, S.A. Malik, Inverse Problem for a Space‐time Fractional Diffusion Equation: Application of Fractional Sturm‐liouville Operator, Math. Methods Appl. Sci. 41 (2018), 2733–2747. https://doi.org/10.1002/mma.4776.
- S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, 1993.
- Y. Luchko, R. Gorenflo, An Operational Method for Solving Fractional Differential Equations With the Caputo Derivatives, Acta Math. Vietnam 24 (1999), 207–233.
- Z. Li, Y. Liu, M. Yamamoto, Initial-boundary Value Problems for Multi-Term Time-Fractional Diffusion Equations with Positive Constant Coefficients, Appl. Math. Comput. 257 (2015), 381–397. https://doi.org/10.1016/j.amc.2014.11.073.
- S.A. Malik, A. Ilyas, A. Samreen, Simultaneous Determination of a Source Term and Diffusion Concentration for a Multi-Term Space-Time Fractional Diffusion Equation, Math. Model. Anal. 26 (2021), 411–431. https://doi.org/10.3846/mma.2021.11911.
- M. Ali, S. Aziz, S.A. Malik, Inverse Source Problems for a Space–time Fractional Differential Equation, Inverse Probl. Sci. Eng. 28 (2019), 47–68. https://doi.org/10.1080/17415977.2019.1597079.