Optimal Solutions of the Time-Fractional Wave Models

Main Article Content

T. Alzkari, Himayat Ullah Jan, Mehreen Fiza, Hakeem Ullah, Aasim Ullah Jan, Ali Akgül, A.S. Hendy, Ilyas Khan, A. B. Albidah, Wei Sin Koh

Abstract

In this article, we provide an update on the optimal auxiliary function method (OAFM) in this work. This semi-analytical approach uses the Caputo fractional derivative operator (FOAFM) to solve fractional order differential equations. The efficiency and reliability of the method are shown by using modified equal-width model (MEW), equal-width model (EW), and regularized long wave model (RLW). Hydromagnetics waves in cold plasma are largely dependent on the aforementioned models. Our objective is to study the nonlinear behavior of the plasma system and determine its important features. The results show that even at the first iteration, our proposed method is simple, less expensive computationally, and rapidly converges to accurate results. The presence of the proper auxiliary constants allows for the achievement of convergence and stability. The technique has a remarkable ability to solve many different scientific and technical problems.

Article Details

References

  1. D. Baleanu, Z.B. Guvenc, J.A.T. Machado, eds., New Trends in Nanotechnology and Fractional Calculus Applications, Springer, 2010. https://doi.org/10.1007/978-90-481-3293-5.
  2. D. Baleanu, J.A.T. Machado, A.C.J. Luo, eds., Fractional Dynamics and Control, Springer, 2011. https://doi.org/10.1007/978-1-4614-0457-6.
  3. H.U. Jan, H. Ullah, M. Fiza, I. Khan, S.M. Eldin, Fractional View Analysis of the Diffusion Equations via a Natural Atangana-Baleanu Operator, Alexandria Eng. J. 83 (2023), 19–26. https://doi.org/10.1016/j.aej.2023.10.031.
  4. H.U. Jan, H. Ullah, M. Fiza, I. Khan, A. Mohamed, A.A.A. Mousa, Modification of Optimal Homotopy Asymptotic Method for Multi-Dimensional Time-Fractional Model of Navier-Stokes Equation, Fractals 31 (2023), 2340021. https://doi.org/10.1142/S0218348X23400212.
  5. B. Al-Hadeethi, A.S. Almawla, A.H. Kamel, H.A. Afan, A.N. Ahmed, Numerical Modeling of Flow Pattern with Different Spillway Locations, Math. Model. Eng. Probl. 11 (2024), 1219–1226. https://doi.org/10.18280/mmep.110510.
  6. A.R. Yansai, N. Wahid, L.H. Pin, et al. Numerical Simulation on the Behavior of Cellular Stainless-Steel Beam (CSSB) at Elevated Temperature, J. Eng. Sci. Technol. 19 (2024), 25–39.
  7. A. Alshabanat, M. Jleli, S. Kumar, B. Samet, Generalization of Caputo-Fabrizio Fractional Derivative and Applications to Electrical Circuits, Front. Phys. 8 (2020), 64. https://doi.org/10.3389/fphy.2020.00064.
  8. F. Ali, M. Iftikhar, I. Khan, N.A. Sheikh, Aamina, K.S. Nisar, Time Fractional Analysis of Electro-Osmotic Flow of Walters’s-B Fluid with Time-Dependent Temperature and Concentration, Alexandria Eng. J. 59 (2020), 25–38. https://doi.org/10.1016/j.aej.2019.11.020.
  9. N.A. Sheikh, M. Jamil, D.L.C. Ching, et al. A Generalized Model for Quantitative Analysis of Sediments Loss: A Caputo Time Fractional Model, J. King Saud Univ. - Sci. 33 (2021), 101179. https://doi.org/10.1016/j.jksus.2020.09.006.
  10. F. Ali, Z. Ahmad, M. Arif, I. Khan, K.S. Nisar, A Time Fractional Model of Generalized Couette Flow of Couple Stress Nanofluid With Heat and Mass Transfer: Applications in Engine Oil, IEEE Access 8 (2020), 146944–146966. https://doi.org/10.1109/ACCESS.2020.3013701.
  11. K.S. Nisar, K. Jothimani, C. Ravichandran, D. Baleanu, D. Kumar, New Approach on Controllability of Hilfer Fractional Derivatives with Nondense Domain, AIMS Math. 7 (2022), 10079–10095. https://doi.org/10.3934/math.2022561.
  12. C. Dineshkumar, R. Udhayakumar, V. Vijayakumar, K.S. Nisar, A. Shukla, A.-H. Abdel-Aty, M. Mahmoud, E.E. Mahmoud, A Note on Existence and Approximate Controllability Outcomes of Atangana–Baleanu Neutral Fractional Stochastic Hemivariational Inequality, Results Phys. 38 (2022), 105647. https://doi.org/10.1016/j.rinp.2022.105647.
  13. K.S. Nisar, A. Ahmad, M. Inc, et al. Analysis of Dengue Transmission Using Fractional Order Scheme, AIMS Math. 7 (2022), 8408–8429. https://doi.org/10.3934/math.2022469.
  14. M. Caputo, Linear Models of Dissipation Whose Q Is Almost Frequency Independent–II, Geophys. J. Int. 13 (1967), 529–539. https://doi.org/10.1111/j.1365-246X.1967.tb02303.x.
  15. N.J. Ford, A.C. Simpson, The Numerical Solution of Fractional Differential Equations: Speed Versus Accuracy, Numer. Algorithms 26 (2001), 333–346. https://doi.org/10.1023/A:1016601312158.
  16. K.B. Oldham, J. Spanier, The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order, Academic Press, New York, 1974.
  17. S.V. Ryzhkov, V.V. Kuzenov, New Realization Method for Calculating Convective Heat Transfer near the Hypersonic Aircraft Surface, Z. Angew. Math. Phys. 70 (2019), 46. https://doi.org/10.1007/s00033-019-1095-1.
  18. M. Caputo, M. Fabrizio, A new Definition of Fractional Derivative without Singular Kernel, Progr. Fract. Differ. Appl. 1 (2015), 73–85.
  19. J. Losada, J.J. Nieto, Properties of a New Fractional Derivative without Singular Kernel, Progr. Fract. Differ. Appl. 1 (2015), 87–92.
  20. X.J. Yang, D. Baleanu, H.M. Srivastava, Local Fractional Integral Transforms and Their Applications, Academic Press, 2015.
  21. D. B ˘aleanu, O.G. Mustafa, On the Global Existence of Solutions to a Class of Fractional Differential Equations, Comput. Math. Appl. 59 (2010), 1835–1841. https://doi.org/10.1016/j.camwa.2009.08.028.
  22. F. Yousef, M. Alquran, I. Jaradat, S. Momani, D. Baleanu, Ternary-Fractional Differential Transform Schema: Theory and Application, Adv. Differ. Equ. 2019 (2019), 197. https://doi.org/10.1186/s13662-019-2137-x.
  23. A. Bokhari, D. Baleanu, R. Belgacem, Application of Shehu Transform to Atangana-Baleanu Derivatives, J. Math. Comput. Sci. 20 (2019), 101–107. https://doi.org/10.22436/jmcs.020.02.03.
  24. J.H. He, F.Y. Ji, Two-Scale Mathematics and Fractional Calculus for Thermodynamics, Therm. Sci. 23 (2019), 2131– 2133. https://doi.org/10.2298/TSCI1904131H.
  25. Y. Wang, S.-W. Yao, H.-W. Yang, A Fractal Derivative Model for Snow’s Thermal Insulation Property, Therm. Sci. 23 (2019), 2351–2354. https://doi.org/10.2298/TSCI1904351W.
  26. M. Tamsir, V.K. Srivastava, Analytical Study of Time-Fractional Order Klein–Gordon Equation, Alexandria Eng. J. 55 (2016), 561–567. https://doi.org/10.1016/j.aej.2016.01.025.
  27. H. Khan, R. Shah, P. Kumam, D. Baleanu, M. Arif, An Efficient Analytical Technique, for The Solution of FractionalOrder Telegraph Equations, Mathematics 7 (2019), 426. https://doi.org/10.3390/math7050426.
  28. A. Saravanan, N. Magesh, An Efficient Computational Technique for Solving the Fokker–Planck Equation with Space and Time Fractional Derivatives, J. King Saud Univ. - Sci. 28 (2016), 160–166. https://doi.org/10.1016/j.jksus.2015.01.003.
  29. V.B.L. Chaurasia, D. Kumar, Solution of the Time-Fractional Navier-Stokes Equation, Gen. Math. Notes 4 (2011), 49–59.
  30. M.D. Campos, E.C. Romao, A High-Order Finite-Difference Scheme with a Linearization Technique for Solving of Three-Dimensional Burgers Equation, Comput. Model. Eng. Sci. 103 (2014), 139–154.
  31. J. Singh, D. Kumar, S. Kumar, A New Fractional Model of Nonlinear Shock Wave Equation Arising in Flow of Gases, Nonlinear Eng. 3 (2014), 43–50. https://doi.org/10.1515/nleng-2013-0022.
  32. X.J. Yang, J.A.T. Machado, A New Fractional Operator of Variable Order: Application in the Description of Anomalous Diffusion, Physica A 481 (2017), 276–283. https://doi.org/10.1016/j.physa.2017.04.054.
  33. P. Di Barba, L. Fattorusso, M. Versaci, Electrostatic Field in Terms of Geometric Curvature in Membrane MEMS Devices, Commun. Appl. Ind. Math. 8 (2017), 165–184. https://doi.org/10.1515/caim-2017-0009.
  34. Y. Lei, H. Wang, X. Chen, et al. Shear Property, High-Temperature Rheological Performance and Low-Temperature Flexibility of Asphalt Mastics Modified with Bio-Oil, Constr. Build. Mater. 174 (2018), 30–37. https://doi.org/10.1016/j.conbuildmat.2018.04.094.
  35. H. Xu, J. Cang, Analysis of a Time Fractional Wave-like Equation with the Homotopy Analysis Method, Phys. Lett. A 372 (2008), 1250–1255. https://doi.org/10.1016/j.physleta.2007.09.039.
  36. M. Dehghan, J. Manafian, A. Saadatmandi, The Solution of the Linear Fractional Partial Differential Equations Using the Homotopy Analysis Method, Z. Naturforsch. A 65 (2010), 935–949.
  37. Z. Odibat, S. Momani, V.S. Erturk, Generalized Differential Transform Method: Application to Differential Equations of Fractional Order, Appl. Math. Comput. 197 (2008), 467–477. https://doi.org/10.1016/j.amc.2007.07.068.
  38. A. Arikoglu, I. Ozkol, Solution of Fractional Differential Equations by Using Differential Transform Method, Chaos Solitons Fractals 34 (2007), 1473–1481. https://doi.org/10.1016/j.chaos.2006.09.004.
  39. X. Zhang, J. Zhao, J. Liu, B. Tang, Homotopy Perturbation Method for Two Dimensional Time-Fractional Wave Equation, Appl. Math. Model. 38 (2014), 5545–5552. https://doi.org/10.1016/j.apm.2014.04.018.
  40. A. Prakash, Analytical Method for Space-Fractional Telegraph Equation by Homotopy Perturbation Transform Method, Nonlinear Eng. 5 (2016), 123–128. https://doi.org/10.1515/nleng-2016-0008.
  41. C.D. Dhaigude, V.R. Nikam, Solution of Fractional Partial Differential Equations Using Iterative Method, Fract. Calc. Appl. Anal. 15 (2012), 684–699. https://doi.org/10.2478/s13540-012-0046-8.
  42. M. Safari, D.D. Ganji, M. Moslemi, Application of He’s Variational Iteration Method and Adomian’s Decomposition Method to the Fractional KdV-Burgers-Kuramoto Equation, Comput. Math. Appl. 58 (2009), 2091–2097. https://doi.org/10.1016/j.camwa.2009.03.043.
  43. M.M. Meerschaert, C. Tadjeran, Finite Difference Approximations for Two-Sided Space-Fractional Partial Differential Equations, Appl. Numer. Math. 56 (2006), 80–90. https://doi.org/10.1016/j.apnum.2005.02.008.
  44. S.S. Ray, R.K. Bera, Analytical Solution of the Bagley Torvik Equation by Adomian Decomposition Method, Appl. Math. Comput. 168 (2005), 398–410. https://doi.org/10.1016/j.amc.2004.09.006.
  45. Y. Jiang, J. Ma, High-Order Finite Element Methods for Time-Fractional Partial Differential Equations, J. Comput. Appl. Math. 235 (2011), 3285–3290. https://doi.org/10.1016/j.cam.2011.01.011.
  46. V. Marinca, N. Heri¸sanu, I. Neme¸s, Optimal Homotopy Asymptotic Method with Application to Thin Film Flow, Open Phys. 6 (2008), 648–653. https://doi.org/10.2478/s11534-008-0061-x.
  47. V. Marinca, N. Heri¸sanu, Application of Optimal Homotopy Asymptotic Method for Solving Nonlinear Equations Arising in Heat Transfer, Int. Commun. Heat Mass Transfer 35 (2008), 710–715. https://doi.org/10.1016/j.icheatmasstransfer.2008.02.010.
  48. V. Marinca, N. Heri¸sanu, C. Bota, B. Marinca, An Optimal Homotopy Asymptotic Method Applied to the Steady Flow of a Fourth-Grade Fluid Past a Porous Plate, Appl. Math. Lett. 22 (2009), 245–251. https://doi.org/10.1016/j.aml.2008.03.019.
  49. H. Ullah, M. Fiza, I. Khan, A. Allah A. Mosa, S. Islam, A. Mohammed, Modifications of the Optimal Auxiliary Function Method to Fractional Order Fornberg-Whitham Equations, Comput. Model. Eng. Sci. 136 (2023), 277–291. https://doi.org/10.32604/cmes.2023.022289.
  50. H. Ullah, R.A. Khan, M. Fiza, S. Islam, S.M. Al-Mekhlafi, Comparative Evaluation of the Optimal Auxiliary Function Method and Numerical Method to Explore the Heat Transfer between Two Parallel Porous Plates of Steady Nanofluids with Brownian and Thermophoretic Influences, Math. Probl. Eng. 2022 (2022), 7975101. https://doi.org/10.1155/2022/7975101.
  51. H. Ullah, M. Fiza, I. Khan, N. Alshammari, N.N. Hamadneh, S. Islam, Modification of the Optimal Auxiliary Function Method for Solving Fractional Order KdV Equations, Fractal Fract. 6 (2022), 288. https://doi.org/10.3390/fractalfract6060288.
  52. L. Zada, R. Nawaz, M. Ayaz, H. Ahmad, H. Alrabaiah, Y.-M. Chu, New Algorithm for the Approximate Solution of Generalized Seventh Order Korteweg-Devries Equation Arising in Shallow Water Waves, Results Phys. 20 (2021), 103744. https://doi.org/10.1016/j.rinp.2020.103744.