Interpolative Hardy-Rogers-Type Proximal Z-Contraction Maps in b-Metric Spaces with Some Applications
Main Article Content
Abstract
Several known types of contractions involving the combination of d(fx, fy) and d(x, y) are unified by the simulation function and the concept of Z-contraction concerns ζ, which generalizes the Banach contraction principle. Our findings build upon or generalize a number of findings in the literature. In this study, we develop interpolative Hardy-Rogers-type proximal Z-contraction maps and demonstrate the existence and uniqueness of the best proximity points in complete b-metric spaces. We illustrate our findings with examples. We provide some pertinent applications.
Article Details
References
- M. Abbas, Y.I. Suleiman, C. Vetro, A Simulation Function Approach for Best Proximity Point and Variational Inequality Problems, Miskolc Math. Notes 18 (2017), 3–16. https://doi.org/10.18514/mmn.2017.2015.
- A. Aghajani, M. Abbas, J. Roshan, Common Fixed Point of Generalized Weak Contractive Mappings in Partially Ordered b-Metric Spaces, Math. Slovaca 64 (2014), 941–960. https://doi.org/10.2478/s12175-014-0250-6.
- D.R. Babu, G.V.R. Babu, Fixed Points of Suzuki Z-Contraction Type Maps in b-Metric Spaces, Adv. Theory Nonlinear Anal. Appl. 4 (2020), 14–28. https://doi.org/10.31197/atnaa.632075.
- D.R. Babu, Some Best Proximity Theorems for Generalized Proximal Z-Contraction Maps in b-Metric Spaces With Applications, Sahand Commun. Math. Anal. 22 (2025), 201–222. https://doi.org/10.22130/scma.2024.2042087.1910.
- D.R. Babu, K.N.K. Rao, Interpolative Contractions for b-Metric Spaces and Their Applications, Eur. J. Pure Appl. Math. (in Press).
- D.R. Babu, K.B. Chander, T.V.P. Kumar, N.S. Prasad, K. Narayana, Fixed Points of Cyclic (σ¨, λ¨)-Admissible Generalized Contraction Type Maps in b-Metric Spaces With Applications, Appl. Math. E-Notes 24 (2024), 379–398.
- D.R. Babu, K.B. Chander, N.S. Prasad, S. Asha, E.S. Babu, T.V.P. Kumar, Some Coupled Fixed Point Theorems on Orthogonal b-Metric Spaces With Applications, Bull. Math. Anal. Appl. 16 (2024), 45–61.
- G.V.R. Babu, T.M. Dula, P.S. Kumar, A Common Fixed Point Theorem in b-Metric Spaces via Simulation Function, J. Fixed Point Theory 12 (2018), 15.
- D.R. Babu, N.S. Prasad, V.A. Babu, K.B. Chander, Some Common Fixed Point Theorems in b-Metric Spaces via F -Class Function With Applications, Adv. Fixed Point Theory 14 (2024), 24. https://doi.org/10.28919/afpt/8515.
- S. Sadiq Basha, Best Proximity Point Theorems, J. Approx. Theory 163 (2011), 1772–1781. https://doi.org/10.1016/j.jat.2011.06.012.
- R. Bellman, E.S. Lee, Functional Equations arising in Dynamic Programming, Aequat. Math. 17 (1978), 1–18. http://eudml.org/doc/136716.
- N. Bunluea, Y. Cho, S. Suantai, Best Proximity Point Theorems for Proximal Multi-Valued Contractions, Filomat 35 (2021), 1889–1897. https://doi.org/10.2298/fil2106889b.
- S. Czerwik, Contraction Mappings in b-Metric Spaces, Acta Math. Inform. Univ. Ostrav. 1 (1993), 5–11.
- A. Das, S. Som, H. Kalita, T. Bag, An Application of φ-Metric and Related Best Proximity Point Results Generalizing Wardowski’s Fixed Point Theorem, Tatra Mt. Math. Publ. 86 (2024), 123–134. https://doi.org/10.2478/tmmp-2024-0011.
- D. Devi, P. Debnath, Fixed Points of Two Interpolative Cyclic Contractions in b-Metric Spaces, Heliyon 11 (2025), e41667. https://doi.org/10.1016/j.heliyon.2025.e41667.
- M. Edraoui, A. El koufi, S. Semami, Fixed Points Results for Various Types of Interpolative Cyclic Contraction, Appl. Gen. Topol. 24 (2023), 247–252. https://doi.org/10.4995/agt.2023.19515.
- M. Edraoui, M. Aamri, Common Fixed Point of Interpolative Hardy-Rogers Pair Contraction, Filomat 38 (2024), 6169–6175. https://doi.org/10.2298/fil2417169e.
- Y.U. Gaba, E. Karapınar, A New Approach to the Interpolative Contractions, Axioms 8 (2019), 110. https://doi.org/10.3390/axioms8040110.
- E. Girgin, Enhancing Generalized Interpolative Contraction Through Simulation Functions, Math. Sci. Appl. ENotes 13 (2025), 54–64. https://doi.org/10.36753/mathenot.1573566.
- D. Gopal, N. Özgür, J. Savaliya, S.K. Srivastava, Suzuki Type Zc-Contraction Mappings and the Fixed-Figure Problem, Hacet. J. Math. Stat. 53 (2024), 471–487. https://doi.org/10.15672/hujms.1287530.
- N. Goswami, R. Roy, Best Proximity Point Results for Generalized Proximal Z-Contraction Mappings in Metric Spaces and Some Applications, Bol. Soc. Parana. Mat. 42 (2024), 1–14. https://doi.org/10.5269/bspm.64145.
- N. Hussain, J.R. Roshan, V. Parvaneh, M. Abbas, Common Fixed Point Results for Weak Contractive Mappings in Ordered b-Dislocated Metric Spaces with Applications, J. Inequal. Appl. 2013 (2013), 486. https://doi.org/10.1186/1029-242x-2013-486.
- M. Jleli, B. Samet, C. Vetro, F. Vetro, Fixed Points for Multivalued Mappings in b-Metric Spaces, Abstr. Appl. Anal. 2015 (2015), 718074. https://doi.org/10.1155/2015/718074.
- E. Karapınar, Revisiting the Kannan Type Contractions Via Interpolation, Adv. Theory Nonlinear Anal. Appl. 2 (2018), 85–87. https://doi.org/10.31197/atnaa.431135.
- E. Karapınar, Interpolative Kannan-Meir-Keeler Type Contraction, Adv. Theory Nonlinear Anal. Appl. 5 (2021), 611–614. https://doi.org/10.31197/atnaa.989389.
- E. Karapınar, R.P. Agarwal, Interpolative Rus-Reich-Ciri´c Type Contractions via Simulation Functions, An. St. ´ Univ. Ovidius Constanta Ser. Mat. 27 (2019), 137–152. https://doi.org/10.2478/auom-2019-0038.
- E. Karapınar, O. Alqahtani, H. Aydi, On Interpolative Hardy-Rogers Type Contractions, Symmetry 11 (2018), 8. https://doi.org/10.3390/sym11010008.
- E. Karapınar, A. Ali, A. Hussain, H. Aydi, On Interpolative Hardy-Rogers Type Multivalued Contractions via a Simulation Function, Filomat 36 (2022), 2847–2856. https://doi.org/10.2298/fil2208847k.
- E. Karapınar, A. Fulga, S.S. Yesilkaya, New Results on Perov-Interpolative Contractions of Suzuki Type Mappings, J. Funct. Spaces 2021 (2021), 9587604. https://doi.org/10.1155/2021/9587604.
- E. Karapınar, A. Fulga, S.S. Ye¸silkaya, Interpolative Meir–keeler Mappings in Modular Metric Spaces, Mathematics 10 (2022), 2986. https://doi.org/10.3390/math10162986.
- M.S. Khan, Y.M. Singh, E. Karapınar, On the Interpolative (ψ, φ)-Type ζ-Contraction, U.P.B. Sci. Bull., Ser. A 83 (2021), 25–38.
- F. Khojasteh, S. Shukla, S. Radenovic, A New Approach to the Study of Fixed Point Theorems for Simulation Functions, Filomat 29 (2015), 1189–1194. https://doi.org/10.2298/fil1506189k.
- P. Kumam, D. Gopal, L. Budhia, A New Fixed Point Theorem under Suzuki Type Z-Contraction Mappings, J. Math. Anal. 8 (2017), 113–119.
- D. Lateef, Best Proximity Points in F -Metric Spaces with Applications, Demonstr. Math. 56 (2023), 20220191. https://doi.org/10.1515/dema-2022-0191.
- J.M. Joseph, J. Beny, M. Marudai, Best Proximity Point Theorems in b-Metric Spaces, J. Anal. 27 (2018), 859–866. https://doi.org/10.1007/s41478-018-0151-0.
- M. Noorwali, Revising the Hardy–rogers–suzuki-Type Z-Contractions, Adv. Differ. Equ. 2021 (2021), 413. https://doi.org/10.1186/s13662-021-03566-8.
- M. Olgun, Ö. Bicer, T. Alyildiz, A New Aspect to Picard Operators with Simulation Functions, Turk. J. Math. 40 (2016), 832–837. https://doi.org/10.3906/mat-1505-26.
- N. Özgür, Fixed-disc Results via Simulation Functions, Turk. J. Math. 43 (2019), 2794–2805. https://doi.org/10.3906/mat-1812-44.
- A. Padcharoen, P. Kumam, P. Saipara, P. Chaipunya, Generalized Suzuki Type Z-Contraction in Complete Metric Spaces, Kragujev. J. Math. 42 (2018), 419–430. https://doi.org/10.5937/kgjmath1803419p.
- H. Qawaqneh, M.S. Md Noorani, W. Shatanawi, H. Aydi, H. Alsamir, Fixed Point Results for Multi-Valued Contractions in b-metric Spaces and an Application, Mathematics 7 (2019), 132. https://doi.org/10.3390/math7020132.
- J.R. Roshan, V. Parvaneh, Z. Kadelburg, Common Fixed Point Theorems for Weakly Isotone Increasing Mappings in Ordered b-Metric Spaces, J. Nonlinear Sci. Appl. 7 (2014), 229–245.
- K. Saravanan, V. Piramanantham, b-Metric Spaces and the Related Approximate Best Proximity Pair Results Using Contraction Mappings, Adv. Fixed Point Theory 14 (2024), 10. https://doi.org/10.28919/afpt/8466.
- S.K. Jain, G. Meena, D. Singh, J.K. Maitra, Best Proximity Point Results with Their Consequences and Applications, J. Inequal. Appl. 2022 (2022), 73. https://doi.org/10.1186/s13660-022-02807-y.
- L. Shanjit, Y. Rohen, Best Proximity Point Theorems in b-Metric Space Satisfying Rational Contractions, J. Nonlinear Anal. Appl. 2019 (2019), 12–22. https://doi.org/10.5899/2019/jnaa-00408.
- L. Wangwe, Common Fixed Point Theorems for Interpolative Rational-Type Mapping in Complex-Valued Metric Space, Eur. J. Math. Appl. 4 (2024), 15. https://doi.org/10.28919/ejma.2024.4.15.