New Optimum solutions of The Time-Fractional Fitzhugh-Nagumo Equations

Main Article Content

T. Alzkari, Adil Khan, Mehreen Fiza, Hakeem Ullah, Aasim Ullah Jan, Ali Akgül, A.S. Hendy, Ilyas Khan, A. B. Albidah, Wei Sin Koh

Abstract

The purpose and objective of the present work are to show the reliability and effectiveness of the newly developed semi-numerical method, i-e, the Optimal Auxiliary Function method OAFM, by solving the fractional problems of Fitzhugh-Nagumo. We have developed OAFM mathematical formulations for nonlinear partial differential equations PDEs. The implementation of the OAFM achieves a fast serial convergence solution. The analysis shows that the proposed method has a simplified implementation and needless computational work, is extremely accurate, and converges rapidly. Tables were constructed to compare the numerical results with the problems' exact solutions to see the errors.

Article Details

References

  1. Z.E.A. Fellah, C. Depollier, M. Fellah, Application of Fractional Calculus to Sound Wave Propagation in Rigid Porous Materials, Validation via Ultrasonic Measurements, Acta Acust. United Acust. 88 (2002), 34-39.
  2. N. Sebaa, Z.E.A. Fellah, W. Lauriks, C. Depollier, Application of Fractional Calculus to Ultrasonic Wave Propagation in Human Cancellous Bone, Signal Process. 86 (2006), 2668–2677. https://doi.org/10.1016/j.sigpro.2006.02.015.
  3. F.C. Meral, T.J. Royston, R. Magin, Fractional Calculus in Viscoelasticity: An Experimental Study, Commun. Nonlinear Sci. Numer. Simul. 15 (2010), 939–945. https://doi.org/10.1016/j.cnsns.2009.05.004.
  4. J.I. Suárez, B.M. Vinagre, A.J. Calderón, C.A. Monje, Y.Q. Chen, Using Fractional Calculus for Lateral and Longitudinal Control of Autonomous Vehicles, in: R. Moreno-Díaz, F. Pichler (Eds.), Computer Aided Systems Theory - EUROCAST 2003, Springer Berlin Heidelberg, Berlin, Heidelberg, 2003: pp. 337–348. https://doi.org/10.1007/978-3-540-45210-2_31.
  5. K.B. Oldham, J. Spanier, The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order, Academic Press, New York, 1974.
  6. M.M. Meerschaert, H. Scheffler, C. Tadjeran, Finite Difference Methods for Two-dimensional Fractional Dispersion Equation, J. Comput. Phys. 211 (2006), 249-261. https://doi.org/10.1016/j.jcp.2005.05.017.
  7. R. Metzler, J. Klafter, The Restaurant at the End of the Random Walk: Recent Developments in the Description of Anomalous Transport by Fractional Dynamics, J. Phys. A: Math. Gen. 37 (2004), R161-R208. https://doi.org/10.1088/0305-4470/37/31/r01.
  8. I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999.
  9. W.R. Schneider, W. Wyss, Fractional Diffusion and Wave Equations, J. Math. Phys. 30 (1989), 134-144. https://doi.org/10.1063/1.528578.
  10. R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore (2000).
  11. A. Atangana, J.F. Gómez‐Aguilar, Numerical Approximation of Riemann‐liouville Definition of Fractional Derivative: From Riemann‐liouville to Atangana‐baleanu, Numer. Methods Partial Differ. Equ. 34 (2017), 1502-1523. https://doi.org/10.1002/num.22195.
  12. M. Torrisi, R. Tracinà, A. Valenti, A Group Analysis Approach for a Nonlinear Differential System Arising in Diffusion Phenomena, J. Math. Phys. 37 (1996), 4758-4767. https://doi.org/10.1063/1.531634.
  13. B. Al-Hadeethi, A.S. Almawla, A.H. Kamel, H.A. Afan, A.N. Ahmed, Numerical Modeling of Flow Pattern with Different Spillway Locations, Math. Model. Eng. Probl. 11 (2024), 1219-1226. https://doi.org/10.18280/mmep.110510.
  14. A.R. Yansai, N. Wahid, L.E.E.H. Pin, et al. Numerical Simulation on the Behavior of Cellular Stainless-Steel Beam (CSSB) at Elevated Temperature, J. Eng. Sci. Technol. 19 (2024), 25–38.
  15. G. Bluman, S. Kumei, On the Remarkable Nonlinear Diffusion Equation (∂/∂x)[a (u+b)−2(∂u/∂x)] −(∂u/∂t)=0, J. Math. Phys. 21 (1980), 1019-1023. https://doi.org/10.1063/1.524550.
  16. C. Chun, Fourier-series-based Variational Iteration Method for a Reliable Treatment of Heat Equations with Variable Coefficients, Int. J. Nonlinear Sci. Numer. Simul. 10 (2009), 1383-1388. https://doi.org/10.1515/ijnsns.2009.10.11-12.1383.
  17. S.H. Chowdhury, A Comparison Between the Modified Homotopy Perturbation Method and Adomian Decomposition Method for Solving Nonlinear Heat Transfer Equations, J. Appl. Sci. 11 (2011), 1416-1420. https://doi.org/10.3923/jas.2011.1416.1420.
  18. H. Yaghoobi, M. Torabi, The Application of Differential Transformation Method to Nonlinear Equations Arising in Heat Transfer, Int. Commun. Heat Mass Transfer 38 (2011), 815-820. https://doi.org/10.1016/j.icheatmasstransfer.2011.03.025.
  19. B. Al-Hadeethi, A.S. Almawla, A.H. Kamel, H.A. Afan, A.N. Ahmed, Numerical Modeling of Flow Pattern with Different Spillway Locations, Math. Model. Eng. Probl. 11 (2024), 1219-1226. https://doi.org/10.18280/mmep.110510.
  20. R.E. Bellman, Perturbation Techniques in Mathematics, Engineering and Physics, Rinehart & Winston, New York, 1964.
  21. J.D. Cole, Perturbation Methods in Applied Mathematics, Blaisdell, Waltham, 1968.
  22. R.E. O’Malley, Introduction to Singular Perturbation, Academic Press, New York, 1974.
  23. S.J. Liao, The Proposed Homotopy Analysis Technique for Solving Nonlinear Problems, Ph.D. Thesis, Shanghai Jiao Tong University, 1992.
  24. V. Marinca, N. Herişanu, I. Nemeş, Optimal Homotopy Asymptotic Method with Application to Thin Film Flow, Open Phys. 6 (2008), 648-653. https://doi.org/10.2478/s11534-008-0061-x.
  25. N. Herişanu, V. Marinca, Explicit Analytical Approximation to Large-amplitude Non-linear Oscillations of a Uniform Cantilever Beam Carrying an Intermediate Lumped Mass and Rotary Inertia, Meccanica 45 (2010), 847-855. https://doi.org/10.1007/s11012-010-9293-0.
  26. V. Marinca, N. Herişanu, C. Bota, B. Marinca, An Optimal Homotopy Asymptotic Method Applied to the Steady Flow of a Fourth-grade Fluid Past a Porous Plate, Appl. Math. Lett. 22 (2009), 245-251. https://doi.org/10.1016/j.aml.2008.03.019.
  27. V. Marinca, N. Herisanu, I. Nemes, A New Analytic Approach to Nonlinear Vibration of An Electrical Machine, Proc. Romanian Acad. 9 (2008), 229-236.
  28. V. Marinca, N. Herişanu, Determination of Periodic Solutions for the Motion of a Particle on a Rotating Parabola by Means of the Optimal Homotopy Asymptotic Method, J. Sound and Vib. 329 (2010), 1450–1459. https://doi.org/10.1016/j.jsv.2009.11.005.
  29. H. Ullah, S. Islam, M. Idrees, M. Fiza, Z. Ul Haq, An Extension of the Optimal Homotopy Asymptotic Method to Coupled Schrödinger-kdv Equation, Int. J. Differ. Equ. 2014 (2014), 106934. https://doi.org/10.1155/2014/106934.
  30. H. Ullah, S. Islam, I. Khan, S. Shafie, M. Fiza, Formulation and Application of Optimal Homotopty Asymptotic Method to Coupled Differential - Difference Equations, PLOS ONE 10 (2015), e0120127. https://doi.org/10.1371/journal.pone.0120127.
  31. H. Ullah, S. Islam, L.C.C. Dennis, T.N. Abdelhameed, I. Khan, M. Fiza, Approximate Solution of Two-dimensional Nonlinear Wave Equation by Optimal Homotopy Asymptotic Method, Math. Probl. Eng. 2015 (2015), 380104. https://doi.org/10.1155/2015/380104.
  32. N.A. Khan, N. Khan, A. Ara, et al. Approximate Analytical Solutions of Fractional Reaction-diffusion Equations, J. King Saud Univ. – Sci. 24 (2012), 111-118. https://doi.org/10.1016/j.jksus.2010.07.021.
  33. M. Merdan, Solutions of Time-Fractional Reaction-Diffusion Equation with Modified Riemann-Liouville Derivative, Int. J. Phys. Sci. 7 (2012), 2317-2326. https://doi.org/10.5897/IJPS12.027.
  34. F. Tchier, M. Inc, Z.S. Korpinar, D. Baleanu, Solutions of the Time Fractional Reaction–Diffusion Equations with Residual Power Series Method, Adv. Mech. Eng. 8 (2016), 1687814016670867. https://doi.org/10.1177/1687814016670867.
  35. N. Herisanu, V. Marinca, An Efficient Analytical Approach to Investigate the Dynamics of a Misaligned Multirotor System, Mathematics 8 (2020), 1083. https://doi.org/10.3390/math8071083.