Linear and Non-linear Contractions in Triple Controlled J Metric Spaces
Main Article Content
Abstract
In this article, we define a new generalization of J metric spaces, defined as Triple controlled J metric spaces where a constant k is replaced by three different function α, β, γ. We prove the existence and the uniqueness of linear and nonlinear contractions like Kannan’s, weak and generlized contractions.
Article Details
References
- K.C. Border, Fixed Point Theorems With Applications to Economics and Game Theory, Cambridge University Press, (1985).
- M. De La Sen, Total Stability Properties Based on Fixed Point Theory for a Class of Hybrid Dynamic Systems, Fixed Point Theory Appl. 2009 (2009), 826438. https://doi.org/10.1155/2009/826438.
- G. Blewitt, Fixed Point Theorems of GPS Carrier Phase Ambiguity Resolution and Their Application to Massive Network Processing: Ambizap, J. Geophys. Res.: Solid Earth 113 (2008), 2008JB005736. https://doi.org/10.1029/2008JB005736.
- M. Ren, X. Huang, X. Zhu, L. Shao, Optimized PSO Algorithm Based on the Simplicial Algorithm of Fixed Point Theory, Appl. Intell. 50 (2020), 2009–2024. https://doi.org/10.1007/s10489-020-01630-6.
- P.L. Combettes, J.C. Pesquet, Fixed Point Strategies in Data Science, IEEE Trans. Signal Process. 69 (2021), 3878–3905. https://doi.org/10.1109/TSP.2021.3069677.
- S. Banach, Sur les Opérations dans les Ensembles Abstraits et Leur Application aux Équations Intégrales, Fundam. Math. 3 (1922), 133–181. https://doi.org/10.4064/fm-3-1-133-181.
- D. Ili´c, V. Pavlovi´c, V. Rakoˇcevi´c, Some New Extensions of Banach’s Contraction Principle to Partial Metric Space, Appl. Math. Lett. 24 (2011), 1326–1330. https://doi.org/10.1016/j.aml.2011.02.025.
- D. Jardón, I. Sánchez, M. Sanchis, Some Questions about Zadeh’s Extension on Metric Spaces, Fuzzy Sets Syst. 379 (2020), 115–124. https://doi.org/10.1016/j.fss.2018.10.019.
- N. Mlaiki, N. Souayah, T. Abdeljawad, H. Aydi, A New Extension to the Controlled Metric Type Spaces Endowed with a Graph, Adv. Differ. Equ. 2021 (2021), 94. https://doi.org/10.1186/s13662-021-03252-9.
- E. Ameer, H. Aydi, H.A. Hammad, W. Shatanawi, N. Mlaiki, On (φ,ψ)-Metric Spaces with Applications, Symmetry 12 (2020), 1459. https://doi.org/10.3390/sym12091459.
- M. Jleli, B. Samet, A Generalized Metric Space and Related Fixed Point Theorems, Fixed Point Theory Appl. 2015 (2015), 61. https://doi.org/10.1186/s13663-015-0312-7.
- N. Souayah, N. Mlaiki, S. Haque, D. Rizk, A.S. Baazeem, W. Shatanawi, A New Type of Three Dimensional Metric Spaces with Applications to Fractional Differential Equations, AIMS Math. 7 (2022), 17802–17814. https://doi.org/10.3934/math.2022980.
- S.S. Aiadi, W.A.M. Othman, K.B. Wong, N. Mlaiki, Fixed Point Theorems in Controlled J-Metric Spaces, AIMS Math. 8 (2023), 4753–4763. https://doi.org/10.3934/math.2023235.
- N. Mlaiki, Double Controlled Metric-like Spaces, J. Inequal. Appl. 2020 (2020), 189. https://doi.org/10.1186/s13660-020-02456-z.
- S.T. Z, K. Gopalan, T. Abdeljawad, A Different Approach to Fixed Point Theorems on Triple Controlled Metric Type Spaces with a Numerical Experiment, Dyn. Syst. Appl. 30 (2021), 111–131. https://doi.org/10.46719/dsa20213018.
- F.M. Azmi, Wardowski Contraction on Controlled S-Metric Type Spaces with Fixed Point Results, Int. J. Anal. Appl. 22 (2024), 151. https://doi.org/10.28924/2291-8639-22-2024-151.