Linear and Non-linear Contractions in Triple Controlled J Metric Spaces

Main Article Content

Suhad Subhi Aiady, Wan Ainun Mior Othman, Kok Bin Wong, Nabil Mlaiki, Dania Santina

Abstract

In this article, we define a new generalization of J metric spaces, defined as Triple controlled J metric spaces where a constant k is replaced by three different function α, β, γ. We prove the existence and the uniqueness of linear and nonlinear contractions like Kannan’s, weak and generlized contractions.

Article Details

References

  1. K.C. Border, Fixed Point Theorems With Applications to Economics and Game Theory, Cambridge University Press, (1985).
  2. M. De La Sen, Total Stability Properties Based on Fixed Point Theory for a Class of Hybrid Dynamic Systems, Fixed Point Theory Appl. 2009 (2009), 826438. https://doi.org/10.1155/2009/826438.
  3. G. Blewitt, Fixed Point Theorems of GPS Carrier Phase Ambiguity Resolution and Their Application to Massive Network Processing: Ambizap, J. Geophys. Res.: Solid Earth 113 (2008), 2008JB005736. https://doi.org/10.1029/2008JB005736.
  4. M. Ren, X. Huang, X. Zhu, L. Shao, Optimized PSO Algorithm Based on the Simplicial Algorithm of Fixed Point Theory, Appl. Intell. 50 (2020), 2009–2024. https://doi.org/10.1007/s10489-020-01630-6.
  5. P.L. Combettes, J.C. Pesquet, Fixed Point Strategies in Data Science, IEEE Trans. Signal Process. 69 (2021), 3878–3905. https://doi.org/10.1109/TSP.2021.3069677.
  6. S. Banach, Sur les Opérations dans les Ensembles Abstraits et Leur Application aux Équations Intégrales, Fundam. Math. 3 (1922), 133–181. https://doi.org/10.4064/fm-3-1-133-181.
  7. D. Ili´c, V. Pavlovi´c, V. Rakoˇcevi´c, Some New Extensions of Banach’s Contraction Principle to Partial Metric Space, Appl. Math. Lett. 24 (2011), 1326–1330. https://doi.org/10.1016/j.aml.2011.02.025.
  8. D. Jardón, I. Sánchez, M. Sanchis, Some Questions about Zadeh’s Extension on Metric Spaces, Fuzzy Sets Syst. 379 (2020), 115–124. https://doi.org/10.1016/j.fss.2018.10.019.
  9. N. Mlaiki, N. Souayah, T. Abdeljawad, H. Aydi, A New Extension to the Controlled Metric Type Spaces Endowed with a Graph, Adv. Differ. Equ. 2021 (2021), 94. https://doi.org/10.1186/s13662-021-03252-9.
  10. E. Ameer, H. Aydi, H.A. Hammad, W. Shatanawi, N. Mlaiki, On (φ,ψ)-Metric Spaces with Applications, Symmetry 12 (2020), 1459. https://doi.org/10.3390/sym12091459.
  11. M. Jleli, B. Samet, A Generalized Metric Space and Related Fixed Point Theorems, Fixed Point Theory Appl. 2015 (2015), 61. https://doi.org/10.1186/s13663-015-0312-7.
  12. N. Souayah, N. Mlaiki, S. Haque, D. Rizk, A.S. Baazeem, W. Shatanawi, A New Type of Three Dimensional Metric Spaces with Applications to Fractional Differential Equations, AIMS Math. 7 (2022), 17802–17814. https://doi.org/10.3934/math.2022980.
  13. S.S. Aiadi, W.A.M. Othman, K.B. Wong, N. Mlaiki, Fixed Point Theorems in Controlled J-Metric Spaces, AIMS Math. 8 (2023), 4753–4763. https://doi.org/10.3934/math.2023235.
  14. N. Mlaiki, Double Controlled Metric-like Spaces, J. Inequal. Appl. 2020 (2020), 189. https://doi.org/10.1186/s13660-020-02456-z.
  15. S.T. Z, K. Gopalan, T. Abdeljawad, A Different Approach to Fixed Point Theorems on Triple Controlled Metric Type Spaces with a Numerical Experiment, Dyn. Syst. Appl. 30 (2021), 111–131. https://doi.org/10.46719/dsa20213018.
  16. F.M. Azmi, Wardowski Contraction on Controlled S-Metric Type Spaces with Fixed Point Results, Int. J. Anal. Appl. 22 (2024), 151. https://doi.org/10.28924/2291-8639-22-2024-151.