Geometry of Moving Spacelike Curves and their Evolution Equations in de Sitter 3-Space
Main Article Content
Abstract
In this paper, we study the geometry of moving spacelike curves in the three-dimensional de Sitter space \(S_{1}^{3}\). Then, the evolution equations of the pseudo-orthonormal frame and the curvatures for these curves are derived. Moreover, some conditions for an inelastic curve flow in \(S_{1}^{3}\) are presented. Finally, interesting illustrative examples of the obtained results are given and plotted.
Article Details
References
- M.J. Ablowitz, H. Segur, Solitons and the Inverse Scattering Transformation, SIAM, Philadelphia, 1981.
- G.L. Lamb, Solitons on Moving Space Curves, J. Math. Phys. 18 (1977), 1654–1661. https://doi.org/10.1063/1.523453.
- H. Hasimoto, A Soliton on a Vortex Filament, J. Fluid Mech. 51 (1972), 477–485. https://doi.org/10.1017/S0022112072002307.
- P. Guha, Moving Space Curve Equations and a Family of Coupled KdV Type Systems, Chaos Solitons Fractals 15 (2003), 41–46. https://doi.org/10.1016/S0960-0779(02)00002-4.
- K.S. Chou, C. Qu, Motions of Curves in Similarity Geometries and Burgers-mKdV Hierarchies, Chaos Solitons Fractals 19 (2004), 47–53. https://doi.org/10.1016/S0960-0779(03)00060-2.
- K. Nakayama, H. Segur, M. Wadati, Integrability and the Motion of Curves, Phys. Rev. Lett. 69 (1992), 2603–2606. https://doi.org/10.1103/PhysRevLett.69.2603.
- M. Hisakado, M. Wadati, Moving Discrete Curve and Geometric Phase, Phys. Lett. A 214 (1996), 252–258. https://doi.org/10.1016/0375-9601(96)00207-1.
- K. Nakayama, Motion of Curves in Hyperboloid in the Minkowski Space, J. Phys. Soc. Japan 67 (1998), 3031–3037. https://doi.org/10.1143/JPSJ.67.3031.
- N.H. Abdel-All, M.T. Al-dossary, Motion of Curves Specified by Acceleration Field in R n , Appl. Math. Sci. 7 (2013), 3403–3418. https://doi.org/10.12988/ams.2013.33170.
- N.H. Abdel-All, R.A. Hussien, T. Youssef, Evolution of Curves via the Velocities of the Moving Frame, J. Math. Comput. Sci.2 (2012), 1170–1185.
- N.H. Abdel-All, M.A. Abdel-Razek, H.S. Abdel-Aziz, A.A. Khalil, Geometry of Evolving Plane Curves Problem via Lie Group Analysis, Stud. Math. Sci. 2 (2011), 51–62.
- N.H. Abdel-All, H.N. Abd-Ellah, H.S. Abdel-Aziz, M.A. Abdel-Razek, A.A. Khalil, Evolution of a Helix Curve by Observing Its Velocity, Life Sci. J. 11 (2014), 41–47.
- N. Gürbüz, Inextensible Flows of Spacelike, Timelike and Null Curves, Int. J. Contemp. Math. Sci. 4 (2009), 1599–1604.
- D.Y. Kwon, F.C. Park, Evolution of Inelastic Plane Curves, Appl. Math. Lett. 12 (1999), 115–119. https://doi.org/10.1016/S0893-9659(99)00088-9.
- D. Latifi, Inextensible Flows of Curves in Minkowskian Space, Adv. Stud. Theor. Phys. 16 (2008), 761–768.
- D.W. Yoon, Inelastic Flows of Curves According to Equiform in Galilean Space, J. Chungcheong Math. Soc. 24 (2011), 665–673.
- B. O’Neill, Semi-Riemannian Geometry, Academic Press, New York, 1983.
- H.S. Abdel-Aziz, M.K. Saad, A.A. Abdel-Salam, On Involute-Evolute Curve Couple in the Hyperbolic and de Sitter Spaces, J. Egypt. Math. Soc. 27 (2019), 25. https://doi.org/10.1186/s42787-019-0023-z.
- A.A. Abdel-Salam, M.K. Saad, Classification of Evolutoids and Pedaloids in Minkowski Space-Time Plane, WSEAS Trans. Math. 20 (2021), 97–105. https://doi.org/10.37394/23206.2021.20.10.
- M.K. Saad, H.S. Abdel-Aziz, A.A. Abdel-Salam, Evolutes of Fronts in de Sitter and Hyperbolic Spheres, Int. J. Anal. Appl. 20 (2022), 47. https://doi.org/10.28924/2291-8639-20-2022-47.
- H.S. Abdel-Aziz, H. Serry, M.K. Saad, Evolution Equations of Pseudo Spherical Images for Timelike Curves in Minkowski 3-Space, Math. Stat. 10 (2022), 884–893. https://doi.org/10.13189/ms.2022.100420.
- M.K. Saad, Geometrical Analysis of Spacelike and Timelike Rectifying Curves and Their Applications, Int. J. Anal. Appl. 22 (2024), 108. https://doi.org/10.28924/2291-8639-22-2024-3303.
- A.A. Abdel-Salam, M.I. Elashiry, M.K. Saad, On the Equiform Geometry of Special Curves in Hyperbolic and de Sitter Planes, AIMS Math. 8 (2023), 18435–18454. https://doi.org/10.3934/math.2023937.
- M.K. Saad, H.S. Abdel-Aziz, H.A. Ali, Geometry of Admissible Curves of Constant-Ratio in Pseudo-Galilean Space, Int. J. Anal. Appl. 21 (2023), 102. https://doi.org/10.28924/2291-8639-21-2023-102.