Fractal Attractor via Controlled Strong b-Kannan Iterated Function System
Main Article Content
Abstract
Nowadays, most of the real time problems have been attempted by using well-known fixed point theorems. Especially the Banach contraction theorem is a well-posted tool to solve many dynamical problems of applied mathematics. This paper explores an idea in generalizing fixed point theorem to generate a proposed fractal type set called Controlled Strong b−Kannan Fractal (CSbK-Fractal) through the dynamical system of Kannan contractivity function in the Controlled Strong b−Metric Space (CSbMS). Furthermore, the collage type theorem is proved on CSbK-Fractal. In this context, the interesting results and consequences of newly developing iterated function system and its fractal attractor in the controlled strong b−metric space are discussed with examples. This theory can provide a novel direction to construct a new kind of fractal set in generalized spaces.
Article Details
References
- B.B. Mandelbrot, The Fractal Geometry of Nature, W.H. Freeman and Company, New York, 1983.
- J.E. Hutchinson, Fractals and Self Similarity, Indiana Univ. Math. J. 30 (1981), 713–747. https://doi.org/10.1512/iumj.1981.30.30055.
- M.F. Barnsley, Fractals Everywhere, Academic Press, Cambridge, 2014.
- M.F. Barnsley, SuperFractals, Cambridge University Press, New York, 2006.
- K. Falconer, Fractal Geometry: Mathematical Foundations and Applications, John Wiley & Sons Ltd., Hoboken, 2003.
- G. Edgar, Measure, Topology, and Fractal Geometry, Springer, New York, 2008.
- S. Banerjee, D. Easwaramoorthy, A. Gowrisankar, Fractal Functions, Dimensions and Signal Analysis, Springer, Cham, 2021. https://doi.org/10.1007/978-3-030-62672-3.
- C. Liu, Y. Zhou, G. Wang, et al. Sierpi ´nski Structure and Electronic Topology in Bi Thin Films on InSb(111)B Surfaces, Phys. Rev. Lett. 126 (2021), 176102. https://doi.org/10.1103/PhysRevLett.126.176102.
- Z.G. Song, Y.Y. Zhang, S.S. Li, The Topological Insulator in a Fractal Space, Appl. Phys. Lett. 104 (2014), 233106. https://doi.org/10.1063/1.4882166.
- R.A. El-Nabulsi, Path Integral Formulation of Fractionally Perturbed Lagrangian Oscillators on Fractal, J. Stat. Phys. 172 (2018), 1617–1640. https://doi.org/10.1007/s10955-018-2116-8.
- D. Wójcik, I. Białynicki-Birula, K. Zyczkowski, Time Evolution of Quantum Fractals, Phys. Rev. Lett. 85 (2000), ˙ 5022–5025. https://doi.org/10.1103/PhysRevLett.85.5022.
- D. Easwaramoorthy, R. Uthayakumar, Analysis on Fractals in Fuzzy Metric Spaces, Fractals 19 (2011), 379–386. https://doi.org/10.1142/S0218348X11005543.
- R. Uthayakumar, D. Easwaramoorthy, Hutchinson-Barnsley Operator in Fuzzy Metric Spaces, Int. J. Comput. Math. Sci. 5 (2011), 1418–1422. https://doi.org/10.5281/zenodo.1074795.
- R. Kannan. Some Results on Fixed Points-II, Amer. Math. Mon. 76 (1969), 405–408. https://doi.org/10.1080/00029890.1969.12000228.
- D.R. Sahu, A. Chakraborty, R.P. Dubey, K-Iterated Function System, Fractals 18 (2010), 139–144. https://doi.org/10.1142/s0218348x10004713.
- N. Van Dung, A. Petru¸sel, On Iterated Function Systems Consisting of Kannan Maps, Reich Maps, Chatterjea Type Maps, and Related Results, J. Fixed Point Theory Appl. 19 (2017), 2271–2285. https://doi.org/10.1007/s11784-017-0419-z.
- S. Chandra, S. Verma, S. Abbas, Construction of Fractal Functions Using Kannan Mappings and Smoothness Analysis, arXiv:2301.03075 (2023). https://doi.org/10.48550/arXiv.2301.03075.
- N. Alamgir, Q. Kiran, H. I¸sık, H. Aydi, Fixed Point Results via a Hausdorff Controlled Type Metric, Adv. Differ. Equ. 2020 (2020), 24. https://doi.org/10.1186/s13662-020-2491-8.
- C. Thangaraj, D. Easwaramoorthy, Fractals via Controlled Fisher Iterated Function System, Fractal Fract. 6 (2022), 746. https://doi.org/10.3390/fractalfract6120746.
- C. Thangaraj, D. Easwaramoorthy, B. Selmi, B.P. Chamola, Generation of Fractals via Iterated Function System of Kannan Contractions in Controlled Metric Space, Math. Comput. Simul. 222 (2024), 188–198. https://doi.org/10.1016/j.matcom.2023.08.017.
- J. Andres, J. Fiser, Metric and Topological Multivalued Fractals, Int. J. Bifurcation Chaos 14 (2004), 1277–1289. https://doi.org/10.1142/s021812740400979x.
- R. Achour, Z. Li, B. Selmi, T. Wang. A Multifractal Formalism for New General Fractal Measures, Chaos Solitons Fractals 181 (2024), 114655. https://doi.org/10.1016/j.chaos.2024.114655.
- C. Thangaraj, R. Valarmathi, D. Easwaramoorthy, D. Ramesh Kumar, and Bhagwati Prasad Chamola, Generation of Fractal Attractor for Controlled Metric Based Dynamical Systems, Contemp. Math. 5 (2024), 6165–6188. https://doi.org/10.37256/cm.5420245323.
- W. Kirk, N. Shahzad, Fixed Point Theory in Distance Spaces, Springer, Cham, 2014.
- D. Santina, W.A.M. Othman, K.B. Wong, N. Mlaiki, New Generalization of Metric-Type Spaces-Strong Controlled, Symmetry 15 (2023), 416. https://doi.org/10.3390/sym15020416.