Fractal Attractor via Controlled Strong b-Kannan Iterated Function System

Main Article Content

M. Dhanzeem Ahmed, D. Easwaramoorthy

Abstract

Nowadays, most of the real time problems have been attempted by using well-known fixed point theorems. Especially the Banach contraction theorem is a well-posted tool to solve many dynamical problems of applied mathematics. This paper explores an idea in generalizing fixed point theorem to generate a proposed fractal type set called Controlled Strong b−Kannan Fractal (CSbK-Fractal) through the dynamical system of Kannan contractivity function in the Controlled Strong b−Metric Space (CSbMS). Furthermore, the collage type theorem is proved on CSbK-Fractal. In this context, the interesting results and consequences of newly developing iterated function system and its fractal attractor in the controlled strong b−metric space are discussed with examples. This theory can provide a novel direction to construct a new kind of fractal set in generalized spaces.

Article Details

References

  1. B.B. Mandelbrot, The Fractal Geometry of Nature, W.H. Freeman and Company, New York, 1983.
  2. J.E. Hutchinson, Fractals and Self Similarity, Indiana Univ. Math. J. 30 (1981), 713–747. https://doi.org/10.1512/iumj.1981.30.30055.
  3. M.F. Barnsley, Fractals Everywhere, Academic Press, Cambridge, 2014.
  4. M.F. Barnsley, SuperFractals, Cambridge University Press, New York, 2006.
  5. K. Falconer, Fractal Geometry: Mathematical Foundations and Applications, John Wiley & Sons Ltd., Hoboken, 2003.
  6. G. Edgar, Measure, Topology, and Fractal Geometry, Springer, New York, 2008.
  7. S. Banerjee, D. Easwaramoorthy, A. Gowrisankar, Fractal Functions, Dimensions and Signal Analysis, Springer, Cham, 2021. https://doi.org/10.1007/978-3-030-62672-3.
  8. C. Liu, Y. Zhou, G. Wang, et al. Sierpi ´nski Structure and Electronic Topology in Bi Thin Films on InSb(111)B Surfaces, Phys. Rev. Lett. 126 (2021), 176102. https://doi.org/10.1103/PhysRevLett.126.176102.
  9. Z.G. Song, Y.Y. Zhang, S.S. Li, The Topological Insulator in a Fractal Space, Appl. Phys. Lett. 104 (2014), 233106. https://doi.org/10.1063/1.4882166.
  10. R.A. El-Nabulsi, Path Integral Formulation of Fractionally Perturbed Lagrangian Oscillators on Fractal, J. Stat. Phys. 172 (2018), 1617–1640. https://doi.org/10.1007/s10955-018-2116-8.
  11. D. Wójcik, I. Białynicki-Birula, K. Zyczkowski, Time Evolution of Quantum Fractals, Phys. Rev. Lett. 85 (2000), ˙ 5022–5025. https://doi.org/10.1103/PhysRevLett.85.5022.
  12. D. Easwaramoorthy, R. Uthayakumar, Analysis on Fractals in Fuzzy Metric Spaces, Fractals 19 (2011), 379–386. https://doi.org/10.1142/S0218348X11005543.
  13. R. Uthayakumar, D. Easwaramoorthy, Hutchinson-Barnsley Operator in Fuzzy Metric Spaces, Int. J. Comput. Math. Sci. 5 (2011), 1418–1422. https://doi.org/10.5281/zenodo.1074795.
  14. R. Kannan. Some Results on Fixed Points-II, Amer. Math. Mon. 76 (1969), 405–408. https://doi.org/10.1080/00029890.1969.12000228.
  15. D.R. Sahu, A. Chakraborty, R.P. Dubey, K-Iterated Function System, Fractals 18 (2010), 139–144. https://doi.org/10.1142/s0218348x10004713.
  16. N. Van Dung, A. Petru¸sel, On Iterated Function Systems Consisting of Kannan Maps, Reich Maps, Chatterjea Type Maps, and Related Results, J. Fixed Point Theory Appl. 19 (2017), 2271–2285. https://doi.org/10.1007/s11784-017-0419-z.
  17. S. Chandra, S. Verma, S. Abbas, Construction of Fractal Functions Using Kannan Mappings and Smoothness Analysis, arXiv:2301.03075 (2023). https://doi.org/10.48550/arXiv.2301.03075.
  18. N. Alamgir, Q. Kiran, H. I¸sık, H. Aydi, Fixed Point Results via a Hausdorff Controlled Type Metric, Adv. Differ. Equ. 2020 (2020), 24. https://doi.org/10.1186/s13662-020-2491-8.
  19. C. Thangaraj, D. Easwaramoorthy, Fractals via Controlled Fisher Iterated Function System, Fractal Fract. 6 (2022), 746. https://doi.org/10.3390/fractalfract6120746.
  20. C. Thangaraj, D. Easwaramoorthy, B. Selmi, B.P. Chamola, Generation of Fractals via Iterated Function System of Kannan Contractions in Controlled Metric Space, Math. Comput. Simul. 222 (2024), 188–198. https://doi.org/10.1016/j.matcom.2023.08.017.
  21. J. Andres, J. Fiser, Metric and Topological Multivalued Fractals, Int. J. Bifurcation Chaos 14 (2004), 1277–1289. https://doi.org/10.1142/s021812740400979x.
  22. R. Achour, Z. Li, B. Selmi, T. Wang. A Multifractal Formalism for New General Fractal Measures, Chaos Solitons Fractals 181 (2024), 114655. https://doi.org/10.1016/j.chaos.2024.114655.
  23. C. Thangaraj, R. Valarmathi, D. Easwaramoorthy, D. Ramesh Kumar, and Bhagwati Prasad Chamola, Generation of Fractal Attractor for Controlled Metric Based Dynamical Systems, Contemp. Math. 5 (2024), 6165–6188. https://doi.org/10.37256/cm.5420245323.
  24. W. Kirk, N. Shahzad, Fixed Point Theory in Distance Spaces, Springer, Cham, 2014.
  25. D. Santina, W.A.M. Othman, K.B. Wong, N. Mlaiki, New Generalization of Metric-Type Spaces-Strong Controlled, Symmetry 15 (2023), 416. https://doi.org/10.3390/sym15020416.