Boundedness of the Higher Order Commutators of Marcinkiewicz Integral Operator on Grand Variable Herz-Morrey Spaces

Main Article Content

Ghada AlNemer, Ghada Ali Basendwah, Mehvish Sultan, Ioan-Lucian Popa

Abstract

In this paper, the authors prove the boundedness of higher order commutators of Marcinkiewicz integral operator under some proper assumptions on grand variable Herz-Morrey spaces. Then we obtain the estimates for the Marcinkiewicz fractional operator of variable order in grand variable Herz spaces.

Article Details

References

  1. D.V. Cruz-Uribe, A. Fiorenza, Variable Lebesgue Spaces, Springer, (2013).
  2. L. Diening, P. H{"a}st{"o}, A. Nekvinda, Open Problems in Variable Exponent Lebesgue and Sobolev Spaces, in: FSDONA04 Proceedings, pp. 38–52, (2004).
  3. L. Diening, P. Harjulehto, P. Hästö, M. Ruzicka, Lebesgue and Sobolev Spaces with Variable Exponents, Springer, (2011).
  4. M. Izuki, Boundedness of Vector-Valued Sublinear Operators on Herz-Morrey Spaces With Variable Exponent, Math. Sci. Res. J. 13 (2009), 243–253.
  5. M. Izuki, Boundedness of Commutators on Herz Spaces with Variable Exponent, Rend. Circ. Mat. Palermo 59 (2010), 199–213. https://doi.org/10.1007/s12215-010-0015-1.
  6. V. Kokilashvili, A. Meskhi, H. Rafeiro, S. Samko, Integral Operators in Non-Standard Function Spaces, Vol. 1: Variable Exponent Lebesgue and Amalgam Spaces, Vol. 248, Springer, Cham, 2016. https://doi.org/10.1007/978-3-319-21015-5.
  7. V. Kokilashvili, A. Meskhi, H. Rafeiro, S. Samko, Integral Operators in Non-Standard Function Spaces, Vol. 2: Variable Exponent Hölder, Morrey–campanato and Grand Spaces, Vol. 249, Springer, Cham, 2016. https://doi.org/10.1007/978-3-319-21018-6.
  8. V. Kokilashvili, S. Samko, On Sobolev Theorem for Riesz-Type Potentials in Lebesgue Spaces with Variable Exponent, Z. Anal. Anwend. 22 (2003), 899–910. https://doi.org/10.4171/zaa/1178.
  9. A. Meskhi, H. Rafeiro, M.A. Zaighum, On the Boundedness of Marcinkiewicz Integrals on Continual Variable Exponent Herz Spaces, Georgian Math. J. 26 (2017), 105–116. https://doi.org/10.1515/gmj-2017-0050.
  10. M. Sultan, B. Sultan, A Note on the Boundedness of Marcinkiewicz Integral Operator on Continual Herz-Morrey Spaces, Filomat 39 (2025), 2017–2027.
  11. H. Rafeiro, S. Samko, Riesz Potential Operator in Continual Variable Exponents Herz Spaces, Math. Nachr. 288 (2014), 465–475. https://doi.org/10.1002/mana.201300270.
  12. M. Růžička, Electrorheological Fluids: Modeling and Mathematical Theory, Springer, Berlin, 2000. https://doi.org/10.1007/bfb0104029.
  13. S. Samko, Variable Exponent Herz Spaces, Mediterr. J. Math. 10 (2013), 2007–2025. https://doi.org/10.1007/s00009-013-0285-x.
  14. M. Sultan, B. Sultan, A. Khan, T. Abdeljawad, Boundedness of Marcinkiewicz Integral Operator of Variable Order in Grand Herz-Morrey Spaces, AIMS Math. 8 (2023), 22338–22353. https://doi.org/10.3934/math.20231139.
  15. B. Sultan, M. Sultan, Boundedness of Higher Order Commutators of Hardy Operators on Grand Herz-Morrey Spaces, Bull. Des Sci. Mathématiques 190 (2024), 103373. https://doi.org/10.1016/j.bulsci.2023.103373.
  16. M. Sultan, B. Sultan, A. Hussain, Grand Herz–morrey Spaces with Variable Exponent, Math. Notes 114 (2023), 957–977. https://doi.org/10.1134/s0001434623110305.
  17. M. Sultan, B. Sultan, A. Aloqaily, N. Mlaiki, Boundedness of Some Operators on Grand Herz Spaces with Variable Exponent, AIMS Math. 8 (2023), 12964–12985. https://doi.org/10.3934/math.2023653.
  18. B. Sultan, F. Azmi, M. Sultan, M. Mehmood, N. Mlaiki, Boundedness of Riesz Potential Operator on Grand Herz-Morrey Spaces, Axioms 11 (2022), 583. https://doi.org/10.3390/axioms11110583.
  19. B. Sultan, M. Sultan, Boundedness of Commutators of Rough Hardy Operators on Grand Variable Herz Spaces, Forum Math. 36 (2023), 717–733. https://doi.org/10.1515/forum-2023-0152.
  20. A. Hussain, G. Gao, Multilinear Singular Integrals and Commutators on Herz Space with Variable Exponent, ISRN Math. Anal. 2014 (2014), 626327. https://doi.org/10.1155/2014/626327.
  21. A. Hussain, I. Khan, A. Mohamed, Variable Herz–morrey Estimates for Rough Fractional Hausdorff Operator, J. Inequal. Appl. 2024 (2024), 33. https://doi.org/10.1186/s13660-024-03110-8.
  22. A. Ajaib, A. Hussain, Weighted Cbmo Estimates for Commutators of Matrix Hausdorff Operator on the Heisenberg Group, Open Math. 18 (2020), 496–511. https://doi.org/10.1515/math-2020-0175.
  23. A. Hussain, A. Ajaib, Some Results for the Commutators of Generalized Hausdorff Operator, J. Math. Inequal. (2019), 1129–1146. https://doi.org/10.7153/jmi-2019-13-80.
  24. J. Younas, A. Hussain, H. Alhazmi, A.F. Aljohani, I. Khan, Bmo Estimates for Commutators of the Rough Fractional Hausdorff Operator on Grand-Variable-Herz-Morrey Spaces, AIMS Math. 9 (2024), 23434–23448. https://doi.org/10.3934/math.20241139.
  25. B. Sultan, M. Sultan, I. Khan, On Sobolev Theorem for Higher Commutators of Fractional Integrals in Grand Variable Herz Spaces, Commun. Nonlinear Sci. Numer. Simul. 126 (2023), 107464. https://doi.org/10.1016/j.cnsns.2023.107464.
  26. B. Sultan, M. Sultan, Sobolev-type Theorem for Commutators of Hardy Operators in Grand Herz Spaces, Ukr. Mat. Zhurnal 76 (2024), 1052–1068. https://doi.org/10.3842/umzh.v76i7.7546.
  27. M. Sultan, B. Sultan, R.E. Castillo, Weighted Composition Operator on Gamma Spaces with Variable Exponent, J. Pseudo-Differ. Oper. Appl. 15 (2024), 46. https://doi.org/10.1007/s11868-024-00619-w.
  28. M. Sultan, B. Sultan, A Note on the Boundedness of Higher Order Commutators on Fractional Integrals in Grand Variable Herz-Morrey Spaces, Kragujev. J. Math. 50 (2026), 1063–1080.
  29. B. Sultan, M. Sultan, A. Khan, T. Abdeljawad, Boundedness of Commutators of Variable Marcinkiewicz Fractional Integral Operator in Grand Variable Herz Spaces, J. Inequal. Appl. 2024 (2024), 93. https://doi.org/10.1186/s13660-024-03169-3.
  30. B. Sultan, M. Sultan, Q. Zhang, N. Mlaiki, Boundedness of Hardy Operators on Grand Variable Weighted Herz Spaces, AIMS Math. 8 (2023), 24515–24527. https://doi.org/10.3934/math.20231250.
  31. B. Sultan, M. Sultan, A. Hussain, Boundedness of the Bochner–riesz Operators on the Weighted Herz-Morrey Type Hardy Spaces, Complex Anal. Oper. Theory 19 (2025), 49. https://doi.org/10.1007/s11785-025-01671-0.
  32. B. Sultan, A. Hussain, M. Sultan, Chracterization of Generalized Campanato Spaces with Variable Exponents via Fractional Integrals, J. Pseudo-Differ. Oper. Appl. 16 (2025), 22. https://doi.org/10.1007/s11868-024-00651-w.
  33. B. Sultan, M. Sultan, M. Mehmood, F. Azmi, M.A. Alghafli, N. Mlaiki, Boundedness of Fractional Integrals on Grand Weighted Herz Spaces with Variable Exponent, AIMS Math. 8 (2023), 752–764. https://doi.org/10.3934/math.2023036.
  34. B. Sultan, F.M. Azmi, M. Sultan, T. Mahmood, N. Mlaiki, N. Souayah, Boundedness of Fractional Integrals on Grand Weighted Herz–morrey Spaces with Variable Exponent, Fractal Fract. 6 (2022), 660. https://doi.org/10.3390/fractalfract6110660.
  35. H. Wang, Commutators of Marcinkiewicz Integrals on Herz Spaces with Variable Exponent, Czechoslov. Math. J. 66 (2016), 251–269. https://doi.org/10.1007/s10587-016-0254-1.
  36. J. Wu, W. Zhao, Boundedness for Fractional Hardy-Type Operator on Variable-Exponent Herz–morrey Spaces, Kyoto J. Math. 56 (2016), 831–845. https://doi.org/10.1215/21562261-3664932.