Third Hankel Determinant and Zalcman Functional for Sakaguchi Type Starlike Functions Involving q-Derivative Operator Related with Sine Function

Main Article Content

S. Ashwini, M. Ruby Salestina, G. Murugusundaramoorthy

Abstract

The purpose of this paper is to consider coefficient estimates for q-starlike function with respect to symmetric points associated with sine function \(\mathcal{SS}^*_ q(1+sin(z))\) consisting of analytic functions \(f\) normalized by \(f(0)=f'(0)-1=0\) in the open unit disk \(\mathcal{U}_d=\{ z:z\in \mathbb{C}\quad \text{and}\quad \left\vert z\right\vert <1\}\) satisfying the condition \(\dfrac{2[zD_qf(z)]}{f(z)-f(-z)}\prec{1+sin(z)}=\psi(z)\), for all \(z\in\mathcal{U}_d\) to derive certain coefficient estimates \(b_2,b_3\) etc and Fekete-Szeg\"{o} inequality for \(f\in\mathcal{SS}^*_q(1+sin(z)).\) Further to investigate the possible upper bound of third order Hankel determinant and also the Zalcman functional for \(f\in\mathcal{SS}^*_q(1+sin(z))\).

Article Details

References

  1. M. Arif, M. Raza, H. Tang, S. Hussain, H. Khan, Hankel Determinant of Order Three for Familiar Subsets of Analytic Functions Related with Sine Function, Open Math. 17 (2019), 1615–1630. https://doi.org/10.1515/math-2019-0132.
  2. K.O. Babalola, On $H_3(1)$ Hankel Determinant for Some Classes of Univalent Functions, arXiv:0910.3779 (2009), https://doi.org/10.48550/arXiv.0910.3779.
  3. D. Bansal, J. Sokol, Zalcman Conjecture for Some Subclass Analytic Functions, J. Fract. Calc. Appl. 8 (2017), 1–5.
  4. J.E. Brown, A. Tsao, On the Zalcman Conjecture for Starlike and Typically Real Functions, Math. Z. 191 (1986), 467–474. https://doi.org/10.1007/bf01162720.
  5. F.H. Jackson, On q-Functions and a Certain Difference Operator, Trans. R. Soc. Edinb. 46 (1909), 253–281. https://doi.org/10.1017/s0080456800002751.
  6. N.E. Cho, B. Kowalczyk, O.S. Kwon, A. Lecko, Y.J. Sim, Some Coefficient Inequalities Related to the Hankel Determinant for Strongly Starlike Functions of Order Alpha, J. Math. Inequal. 11 (2017), 429–439. https://doi.org/10.7153/jmi-2017-11-36.
  7. N.E. Cho, V. Kumar, S.S. Kumar, V. Ravichandran, Radius Problems for Starlike Functions Associated with the Sine Function, Bull. Iran. Math. Soc. 45 (2018), 213–232. https://doi.org/10.1007/s41980-018-0127-5.
  8. H.Ö. Güney, G. Murugusundaramoorthy, H.M. Srivastava, The Second Hankel Determinant for a Certain Class of Bi-Close-To-Convex Functions, Results Math. 74 (2019), 93. https://doi.org/10.1007/s00025-019-1020-0.
  9. W.K. Hayman, On the Second Hankel Determinant of Mean Univalent Functions, Proc. Lond. Math. Soc. s3-18 (1968), 77–94. https://doi.org/10.1112/plms/s3-18.1.77.
  10. A. Janteng, S.A. Halim, M. Darus, Coefficient Inequality for a Function Whose Derivative Has a Positive Real Part, J. Inequal. Pure Appl. Math. 7 (2006), 50.
  11. F.R. Keogh, E.P. Merkes, A Coefficient Inequality for Certain Classes of Analytic Functions, Proc. Am. Math. Soc. 20 (1969), 8–12. https://doi.org/10.2307/2035949.
  12. M.G. Khan, B. Ahmad, G. Murugusundaramoorthy, R. Chinram, W.K. Mashwani, Applications of Modified Sigmoid Functions to a Class of Starlike Functions, J. Funct. Spaces 2020 (2020), 8844814. https://doi.org/10.1155/2020/8844814.
  13. M.G. Khan, B. Ahmad, J. Sokol, Z. Muhammad, W.K. Mashwani, R. Chinram, P. Petchkaew, Coefficient Problems in a Class of Functions with Bounded Turning Associated with Sine Function, Eur. J. Pure Appl. Math. 14 (2021), 53–64. https://doi.org/10.29020/nybg.ejpam.v14i1.3902.
  14. M. Ghaffar Khan, B. Ahmad, G. Murugusundaramoorthy, W.K. Mashwani, S. Yalçin, T. Gideon Shaba, Z. Salleh, Third Hankel Determinant and Zalcman Functional for a Class of Starlike Functions with Respect to Symmetric Points Related with Sine Function, J. Math. Comput. Sci. 25 (2021), 29–36. https://doi.org/10.22436/jmcs.025.01.04.
  15. A. Lecko, Y.J. Sim, B. Śmiarowska, The Sharp Bound of the Hankel Determinant of the Third Kind for Starlike Functions of Order 1/2, Complex Anal. Oper. Theory 13 (2018), 2231–2238. https://doi.org/10.1007/s11785-018-0819-0.
  16. W. Ma, The Zalcman Conjecture for Close-To-Convex Functions, Proc. Am. Math. Soc. 104 (1988), 741–744. https://doi.org/10.2307/2046784.
  17. S. Mahmood, M. Jabeen, S.N. Malik, H.M. Srivastava, R. Manzoor, S.M.J. Riaz, Some Coefficient Inequalities of q-Starlike Functions Associated with Conic Domain Defined by q-Derivative, J. Funct. Spaces 2018 (2018), 8492072. https://doi.org/10.1155/2018/8492072.
  18. S. Mahmood, I. Khan, H.M. Srivastava, S.N. Malik, Inclusion Relations for Certain Families of Integral Operators Associated with Conic Regions, J. Inequal. Appl. 2019 (2019), 59. https://doi.org/10.1186/s13660-019-2015-9.
  19. S. Mahmood, H.M. Srivastava, N. Khan, Q.Z. Ahmad, B. Khan, I. Ali, Upper Bound of the Third Hankel Determinant for a Subclass of Q-Starlike Functions, Symmetry 11 (2019), 347. https://doi.org/10.3390/sym11030347.
  20. S. Mahmood, H.M. Srivastava, S.N. Malik, Some Subclasses of Uniformly Univalent Functions with Respect to Symmetric Points, Symmetry 11 (2019), 287. https://doi.org/10.3390/sym11020287.
  21. G. Murugusundaramoorthy, T. Bulboacă, Initial Coefficients and Fekete-Szegő Inequalities for Functions Related to van der Pol Numbers (VPN), Math. Slovaca 73 (2023), 1183–1196. https://doi.org/10.1515/ms-2023-0087.
  22. G. Murugusundaramoorthy, K. Vijaya, T. Bulboacă, Initial Coefficient Bounds for Bi-Univalent Functions Related to Gregory Coefficients, Mathematics 11 (2023), 2857. https://doi.org/10.3390/math11132857.
  23. K.I. Noor, Hankel Determinant Problem for the Class of Functions With Bounded Boundary Rotation, Rev. Roum. Math. Pures Appl. 28 (1983), 731–739.
  24. C. Pommerenke, On the Coefficients and Hankel Determinants of Univalent Functions, J. Lond. Math. Soc. s1-41 (1966), 111–122. https://doi.org/10.1112/jlms/s1-41.1.111.
  25. C. Pommerenke, Univalent Functions, Vandenhoeck and Ruprecht, Gottingen, (1975).
  26. C. Pommerenke, On the Hankel Determinants of Univalent Functions, Mathematika 14 (1967), 108–112. https://doi.org/10.1112/s002557930000807x.
  27. R.K. Raina, J. Sokol, On Coefficient Estimates for a Class of Starlike Functions, Hacet. J. Math. Stat. 44 (2015), 1427–1433.
  28. V. Ravichandran, S. Verma, Bound for the Fifth Coefficient of Certain Starlike Functions, C. R. Math. Acad. Sci. Paris 353 (2015), 505–510. https://doi.org/10.1016/j.crma.2015.03.003.
  29. M. Raza, S.N. Malik, Upper Bound of the Third Hankel Determinant for a Class of Analytic Functions Related with Lemniscate of Bernoulli, J. Inequal. Appl. 2013 (2013), 412. https://doi.org/10.1186/1029-242x-2013-412.
  30. K. SAKAGUCHI, On a Certain Univalent Mapping, J. Math. Soc. Jpn. 11 (1959), 72–75. https://doi.org/10.2969/jmsj/01110072.
  31. M. Shafiq, H.M. Srivastava, N. Khan, Q.Z. Ahmad, M. Darus, S. Kiran, An Upper Bound of the Third Hankel Determinant for a Subclass of q-Starlike Functions Associated with k-Fibonacci Numbers, Symmetry 12 (2020), 1043. https://doi.org/10.3390/sym12061043.
  32. H.M. Srivastava, Q.Z. Ahmad, M. Darus, N. Khan, B. Khan, N. Zaman, H.H. Shah, Upper Bound of the Third Hankel Determinant for a Subclass of Close-To-Convex Functions Associated with the Lemniscate of Bernoulli, Mathematics 7 (2019), 848. https://doi.org/10.3390/math7090848.
  33. H.M. Srivastava, B. Khan, N. Khan, M. Tahir, S. Ahmad, N. Khan, Upper Bound of the Third Hankel Determinant for a Subclass of q-Starlike Functions Associated with the q-Exponential Function, Bull. Sci. Math. 167 (2021), 102942. https://doi.org/10.1016/j.bulsci.2020.102942.