Third Hankel Determinant and Zalcman Functional for Sakaguchi Type Starlike Functions Involving q-Derivative Operator Related with Sine Function
Main Article Content
Abstract
The purpose of this paper is to consider coefficient estimates for q-starlike function with respect to symmetric points associated with sine function \(\mathcal{SS}^*_ q(1+sin(z))\) consisting of analytic functions \(f\) normalized by \(f(0)=f'(0)-1=0\) in the open unit disk \(\mathcal{U}_d=\{ z:z\in \mathbb{C}\quad \text{and}\quad \left\vert z\right\vert <1\}\) satisfying the condition \(\dfrac{2[zD_qf(z)]}{f(z)-f(-z)}\prec{1+sin(z)}=\psi(z)\), for all \(z\in\mathcal{U}_d\) to derive certain coefficient estimates \(b_2,b_3\) etc and Fekete-Szeg\"{o} inequality for \(f\in\mathcal{SS}^*_q(1+sin(z)).\) Further to investigate the possible upper bound of third order Hankel determinant and also the Zalcman functional for \(f\in\mathcal{SS}^*_q(1+sin(z))\).
Article Details
References
- M. Arif, M. Raza, H. Tang, S. Hussain, H. Khan, Hankel Determinant of Order Three for Familiar Subsets of Analytic Functions Related with Sine Function, Open Math. 17 (2019), 1615–1630. https://doi.org/10.1515/math-2019-0132.
- K.O. Babalola, On $H_3(1)$ Hankel Determinant for Some Classes of Univalent Functions, arXiv:0910.3779 (2009), https://doi.org/10.48550/arXiv.0910.3779.
- D. Bansal, J. Sokol, Zalcman Conjecture for Some Subclass Analytic Functions, J. Fract. Calc. Appl. 8 (2017), 1–5.
- J.E. Brown, A. Tsao, On the Zalcman Conjecture for Starlike and Typically Real Functions, Math. Z. 191 (1986), 467–474. https://doi.org/10.1007/bf01162720.
- F.H. Jackson, On q-Functions and a Certain Difference Operator, Trans. R. Soc. Edinb. 46 (1909), 253–281. https://doi.org/10.1017/s0080456800002751.
- N.E. Cho, B. Kowalczyk, O.S. Kwon, A. Lecko, Y.J. Sim, Some Coefficient Inequalities Related to the Hankel Determinant for Strongly Starlike Functions of Order Alpha, J. Math. Inequal. 11 (2017), 429–439. https://doi.org/10.7153/jmi-2017-11-36.
- N.E. Cho, V. Kumar, S.S. Kumar, V. Ravichandran, Radius Problems for Starlike Functions Associated with the Sine Function, Bull. Iran. Math. Soc. 45 (2018), 213–232. https://doi.org/10.1007/s41980-018-0127-5.
- H.Ö. Güney, G. Murugusundaramoorthy, H.M. Srivastava, The Second Hankel Determinant for a Certain Class of Bi-Close-To-Convex Functions, Results Math. 74 (2019), 93. https://doi.org/10.1007/s00025-019-1020-0.
- W.K. Hayman, On the Second Hankel Determinant of Mean Univalent Functions, Proc. Lond. Math. Soc. s3-18 (1968), 77–94. https://doi.org/10.1112/plms/s3-18.1.77.
- A. Janteng, S.A. Halim, M. Darus, Coefficient Inequality for a Function Whose Derivative Has a Positive Real Part, J. Inequal. Pure Appl. Math. 7 (2006), 50.
- F.R. Keogh, E.P. Merkes, A Coefficient Inequality for Certain Classes of Analytic Functions, Proc. Am. Math. Soc. 20 (1969), 8–12. https://doi.org/10.2307/2035949.
- M.G. Khan, B. Ahmad, G. Murugusundaramoorthy, R. Chinram, W.K. Mashwani, Applications of Modified Sigmoid Functions to a Class of Starlike Functions, J. Funct. Spaces 2020 (2020), 8844814. https://doi.org/10.1155/2020/8844814.
- M.G. Khan, B. Ahmad, J. Sokol, Z. Muhammad, W.K. Mashwani, R. Chinram, P. Petchkaew, Coefficient Problems in a Class of Functions with Bounded Turning Associated with Sine Function, Eur. J. Pure Appl. Math. 14 (2021), 53–64. https://doi.org/10.29020/nybg.ejpam.v14i1.3902.
- M. Ghaffar Khan, B. Ahmad, G. Murugusundaramoorthy, W.K. Mashwani, S. Yalçin, T. Gideon Shaba, Z. Salleh, Third Hankel Determinant and Zalcman Functional for a Class of Starlike Functions with Respect to Symmetric Points Related with Sine Function, J. Math. Comput. Sci. 25 (2021), 29–36. https://doi.org/10.22436/jmcs.025.01.04.
- A. Lecko, Y.J. Sim, B. Śmiarowska, The Sharp Bound of the Hankel Determinant of the Third Kind for Starlike Functions of Order 1/2, Complex Anal. Oper. Theory 13 (2018), 2231–2238. https://doi.org/10.1007/s11785-018-0819-0.
- W. Ma, The Zalcman Conjecture for Close-To-Convex Functions, Proc. Am. Math. Soc. 104 (1988), 741–744. https://doi.org/10.2307/2046784.
- S. Mahmood, M. Jabeen, S.N. Malik, H.M. Srivastava, R. Manzoor, S.M.J. Riaz, Some Coefficient Inequalities of q-Starlike Functions Associated with Conic Domain Defined by q-Derivative, J. Funct. Spaces 2018 (2018), 8492072. https://doi.org/10.1155/2018/8492072.
- S. Mahmood, I. Khan, H.M. Srivastava, S.N. Malik, Inclusion Relations for Certain Families of Integral Operators Associated with Conic Regions, J. Inequal. Appl. 2019 (2019), 59. https://doi.org/10.1186/s13660-019-2015-9.
- S. Mahmood, H.M. Srivastava, N. Khan, Q.Z. Ahmad, B. Khan, I. Ali, Upper Bound of the Third Hankel Determinant for a Subclass of Q-Starlike Functions, Symmetry 11 (2019), 347. https://doi.org/10.3390/sym11030347.
- S. Mahmood, H.M. Srivastava, S.N. Malik, Some Subclasses of Uniformly Univalent Functions with Respect to Symmetric Points, Symmetry 11 (2019), 287. https://doi.org/10.3390/sym11020287.
- G. Murugusundaramoorthy, T. Bulboacă, Initial Coefficients and Fekete-Szegő Inequalities for Functions Related to van der Pol Numbers (VPN), Math. Slovaca 73 (2023), 1183–1196. https://doi.org/10.1515/ms-2023-0087.
- G. Murugusundaramoorthy, K. Vijaya, T. Bulboacă, Initial Coefficient Bounds for Bi-Univalent Functions Related to Gregory Coefficients, Mathematics 11 (2023), 2857. https://doi.org/10.3390/math11132857.
- K.I. Noor, Hankel Determinant Problem for the Class of Functions With Bounded Boundary Rotation, Rev. Roum. Math. Pures Appl. 28 (1983), 731–739.
- C. Pommerenke, On the Coefficients and Hankel Determinants of Univalent Functions, J. Lond. Math. Soc. s1-41 (1966), 111–122. https://doi.org/10.1112/jlms/s1-41.1.111.
- C. Pommerenke, Univalent Functions, Vandenhoeck and Ruprecht, Gottingen, (1975).
- C. Pommerenke, On the Hankel Determinants of Univalent Functions, Mathematika 14 (1967), 108–112. https://doi.org/10.1112/s002557930000807x.
- R.K. Raina, J. Sokol, On Coefficient Estimates for a Class of Starlike Functions, Hacet. J. Math. Stat. 44 (2015), 1427–1433.
- V. Ravichandran, S. Verma, Bound for the Fifth Coefficient of Certain Starlike Functions, C. R. Math. Acad. Sci. Paris 353 (2015), 505–510. https://doi.org/10.1016/j.crma.2015.03.003.
- M. Raza, S.N. Malik, Upper Bound of the Third Hankel Determinant for a Class of Analytic Functions Related with Lemniscate of Bernoulli, J. Inequal. Appl. 2013 (2013), 412. https://doi.org/10.1186/1029-242x-2013-412.
- K. SAKAGUCHI, On a Certain Univalent Mapping, J. Math. Soc. Jpn. 11 (1959), 72–75. https://doi.org/10.2969/jmsj/01110072.
- M. Shafiq, H.M. Srivastava, N. Khan, Q.Z. Ahmad, M. Darus, S. Kiran, An Upper Bound of the Third Hankel Determinant for a Subclass of q-Starlike Functions Associated with k-Fibonacci Numbers, Symmetry 12 (2020), 1043. https://doi.org/10.3390/sym12061043.
- H.M. Srivastava, Q.Z. Ahmad, M. Darus, N. Khan, B. Khan, N. Zaman, H.H. Shah, Upper Bound of the Third Hankel Determinant for a Subclass of Close-To-Convex Functions Associated with the Lemniscate of Bernoulli, Mathematics 7 (2019), 848. https://doi.org/10.3390/math7090848.
- H.M. Srivastava, B. Khan, N. Khan, M. Tahir, S. Ahmad, N. Khan, Upper Bound of the Third Hankel Determinant for a Subclass of q-Starlike Functions Associated with the q-Exponential Function, Bull. Sci. Math. 167 (2021), 102942. https://doi.org/10.1016/j.bulsci.2020.102942.