Accelerated Self-Adaptive Method for Solving Nonsmooth Convex Minimization Problem in Real Hilbert Spaces

Main Article Content

L. Mokaba, Hammed A. Abass, Olawale K. Oyewole, Koketso P. Malebana

Abstract

In this manuscript, we propose a proximal gradient type algorithm together with a two step inertia method for approximating solution of convex minimization problem in real Hilbert spaces. The proposed proximal gradient type method is designed in such a way that it does not depend on the Lipschitz constant. Using a self-adaptive rule, we obtain a weak convergence result under the condition that the gradient function of one of the convex functions is uniformly continuous. Preliminary numerical results show that our proposed method has a better convergence in comparison to some other related results in the literature.

Article Details

References

  1. H.A. Abass, Linear Convergence of Alternating Inertial Tseng-type Method for Solving Inclusion Problems on Hadamard Manifolds, Proc. Edinb. Math. Soc. (2024). https://doi.org/10.1017/s0013091524000543.
  2. H.A. Abass, O.K. Oyewole, K.O. Aremu, L.O. Jolaoso, Self-adaptive Technique with Double Inertial Steps for Inclusion Problem on Hadamard Manifolds, J. Oper. Res. Soc. China (2024). https://doi.org/10.1007/s40305-024-00537-0.
  3. T.O. Alakoya, O.J. Ogunsola, O.T. Mewomo, An Inertial Viscosity Algorithm for Solving Monotone Variational Inclusion and Common Fixed Point Problems of Strict Pseudocontractions, Bol. Soc. Mat. Mex. 29 (2023), 31. https://doi.org/10.1007/s40590-023-00502-6.
  4. F. Alvarez, H. Attouch, An Inertial Proximal Method for Maximal Monotone Operators via Discretization of a Nonlinear Oscillator with Damping, Set-Valued Anal. 9 (2001), 3–11. https://doi.org/10.1023/A:1011253113155.
  5. V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Springer, 1976.
  6. H.H. Bauschke, P.L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, Springer, 2011.
  7. S.S. Chen, D.L. Donoho, M.A. Saunders, Atomic Decomposition by Basis Pursuit, SIAM J. Sci. Comput. 20 (1998), 33–61. https://doi.org/10.1137/s1064827596304010.
  8. X. Chen, P. Duan, Inertial Self-adaptive Algorithms for Solving Non-smooth Convex Optimization Problems, Numer. Algorithms 98 (2024), 133–163. https://doi.org/10.1007/s11075-024-01788-x.
  9. P.L. Combettes, Solving Monotone Inclusions Via Compositions of Nonexpansive Averaged Operators, Optimization 53 (2004), 475–504. https://doi.org/10.1080/02331930412331327157.
  10. Y. Guo, W. Cui, Strong Convergence and Bounded Perturbation Resilience of a Modified Proximal Gradient Algorithm, J. Inequalities Appl. 2018 (2018), 103. https://doi.org/10.1186/s13660-018-1695-x.
  11. C. Izuchukwu, M. Aphane, K.O. Aremu, Two-step Inertial Forward–reflected–anchored–backward Splitting Algorithm for Solving Monotone Inclusion Problems, Comput. Appl. Math. 42 (2023), 351. https://doi.org/10.1007/s40314-023-02485-6.
  12. L. Jolaoso, H. Abass, O. Mewomo, A Viscosity-proximal Gradient Method with Inertial Extrapolation for Solving Certain Minimization Problems in Hilbert Space, Arch. Math. (2019), 167–194. https://doi.org/10.5817/am2019-3-167.
  13. P. Maingé, Convergence Theorems for Inertial Km-type Algorithms, J. Comput. Appl. Math. 219 (2008), 223–236. https://doi.org/10.1016/j.cam.2007.07.021.
  14. A.A. Mebawondu, H.A. Abass, O.K. Oyewole, An Accelerated Tseng Type Method for Solving Zero Point Problems and Certain Optimization Problems, Afr. Mat. 36 (2025), 13. https://doi.org/10.1007/s13370-024-01217-1.
  15. L. Mokaba, H.A. Abass, A. Adamu, Two Step Inertial Tseng Method for Solving Monotone Variational Inclusion Problem, Results Appl. Math. 25 (2025), 100545. https://doi.org/10.1016/j.rinam.2025.100545.
  16. A. Moudafi, M. Oliny, Convergence of a Splitting Inertial Proximal Method for Monotone Operators, J. Comput. Appl. Math. 155 (2003), 447–454. https://doi.org/10.1016/s0377-0427(02)00906-8.
  17. Y. Nesterov, Gradient Methods for Minimizing Composite Objective Function, LIDAM Discussion Papers CORE 2007076, Université Catholique de Louvain, Center for Operations Research and Econometrics, 2007.
  18. G.N. Ogwo, T.O. Alakoya, O.T. Mewomo, Inertial Iterative Method with Self-adaptive Step Size for Finite Family of Split Monotone Variational Inclusion and Fixed Point Problems in Banach Spaces, Demonstr. Math. 55 (2022), 193–216. https://doi.org/10.1515/dema-2022-0005.
  19. K. Sakurai, H. Iiduka, Acceleration of the Halpern Algorithm to Search for a Fixed Point of a Nonexpansive Mapping, Fixed Point Theory Appl. 2014 (2014), 202. https://doi.org/10.1186/1687-1812-2014-202.
  20. S. Suantai, P. Thongsri, A Fast Forward-Backward Algorithm Using Linesearch and Inertial Techniques for Convex Bi-Level Optimization Problems with Applications, Carpathian J. Math. 40 (2024), 769–788. https://doi.org/10.37193/CJM.2024.03.15.
  21. B. Tan, H.A. Abass, S. Li, O.K. Oyewole, Two Accelerated Double Inertial Algorithms for Variational Inequalities on Hadamard Manifolds, Commun. Nonlinear Sci. Numer. Simul. 145 (2025), 108734. https://doi.org/10.1016/j.cnsns.2025.108734.
  22. K. Tan, H. Xu, Approximating Fixed Points of Nonexpansive Mappings by the Ishikawa Iteration Process, J. Math. Anal. Appl. 178 (1993), 301–308. https://doi.org/10.1006/jmaa.1993.1309.
  23. R. Tibshirani, Regression Shrinkage and Selection Via the Lasso, J. R. Stat. Soc. Ser. B: Stat. Methodol. 58 (1996), 267–288. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x.
  24. P. Tseng, A Modified Forward-Backward Splitting Method for Maximal Monotone Mappings, SIAM J. Control Optim. 38 (2000), 431–446. https://doi.org/10.1137/S0363012998338806.