Accelerated Self-Adaptive Method for Solving Nonsmooth Convex Minimization Problem in Real Hilbert Spaces
Main Article Content
Abstract
In this manuscript, we propose a proximal gradient type algorithm together with a two step inertia method for approximating solution of convex minimization problem in real Hilbert spaces. The proposed proximal gradient type method is designed in such a way that it does not depend on the Lipschitz constant. Using a self-adaptive rule, we obtain a weak convergence result under the condition that the gradient function of one of the convex functions is uniformly continuous. Preliminary numerical results show that our proposed method has a better convergence in comparison to some other related results in the literature.
Article Details
References
- H.A. Abass, Linear Convergence of Alternating Inertial Tseng-type Method for Solving Inclusion Problems on Hadamard Manifolds, Proc. Edinb. Math. Soc. (2024). https://doi.org/10.1017/s0013091524000543.
- H.A. Abass, O.K. Oyewole, K.O. Aremu, L.O. Jolaoso, Self-adaptive Technique with Double Inertial Steps for Inclusion Problem on Hadamard Manifolds, J. Oper. Res. Soc. China (2024). https://doi.org/10.1007/s40305-024-00537-0.
- T.O. Alakoya, O.J. Ogunsola, O.T. Mewomo, An Inertial Viscosity Algorithm for Solving Monotone Variational Inclusion and Common Fixed Point Problems of Strict Pseudocontractions, Bol. Soc. Mat. Mex. 29 (2023), 31. https://doi.org/10.1007/s40590-023-00502-6.
- F. Alvarez, H. Attouch, An Inertial Proximal Method for Maximal Monotone Operators via Discretization of a Nonlinear Oscillator with Damping, Set-Valued Anal. 9 (2001), 3–11. https://doi.org/10.1023/A:1011253113155.
- V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Springer, 1976.
- H.H. Bauschke, P.L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, Springer, 2011.
- S.S. Chen, D.L. Donoho, M.A. Saunders, Atomic Decomposition by Basis Pursuit, SIAM J. Sci. Comput. 20 (1998), 33–61. https://doi.org/10.1137/s1064827596304010.
- X. Chen, P. Duan, Inertial Self-adaptive Algorithms for Solving Non-smooth Convex Optimization Problems, Numer. Algorithms 98 (2024), 133–163. https://doi.org/10.1007/s11075-024-01788-x.
- P.L. Combettes, Solving Monotone Inclusions Via Compositions of Nonexpansive Averaged Operators, Optimization 53 (2004), 475–504. https://doi.org/10.1080/02331930412331327157.
- Y. Guo, W. Cui, Strong Convergence and Bounded Perturbation Resilience of a Modified Proximal Gradient Algorithm, J. Inequalities Appl. 2018 (2018), 103. https://doi.org/10.1186/s13660-018-1695-x.
- C. Izuchukwu, M. Aphane, K.O. Aremu, Two-step Inertial Forward–reflected–anchored–backward Splitting Algorithm for Solving Monotone Inclusion Problems, Comput. Appl. Math. 42 (2023), 351. https://doi.org/10.1007/s40314-023-02485-6.
- L. Jolaoso, H. Abass, O. Mewomo, A Viscosity-proximal Gradient Method with Inertial Extrapolation for Solving Certain Minimization Problems in Hilbert Space, Arch. Math. (2019), 167–194. https://doi.org/10.5817/am2019-3-167.
- P. Maingé, Convergence Theorems for Inertial Km-type Algorithms, J. Comput. Appl. Math. 219 (2008), 223–236. https://doi.org/10.1016/j.cam.2007.07.021.
- A.A. Mebawondu, H.A. Abass, O.K. Oyewole, An Accelerated Tseng Type Method for Solving Zero Point Problems and Certain Optimization Problems, Afr. Mat. 36 (2025), 13. https://doi.org/10.1007/s13370-024-01217-1.
- L. Mokaba, H.A. Abass, A. Adamu, Two Step Inertial Tseng Method for Solving Monotone Variational Inclusion Problem, Results Appl. Math. 25 (2025), 100545. https://doi.org/10.1016/j.rinam.2025.100545.
- A. Moudafi, M. Oliny, Convergence of a Splitting Inertial Proximal Method for Monotone Operators, J. Comput. Appl. Math. 155 (2003), 447–454. https://doi.org/10.1016/s0377-0427(02)00906-8.
- Y. Nesterov, Gradient Methods for Minimizing Composite Objective Function, LIDAM Discussion Papers CORE 2007076, Université Catholique de Louvain, Center for Operations Research and Econometrics, 2007.
- G.N. Ogwo, T.O. Alakoya, O.T. Mewomo, Inertial Iterative Method with Self-adaptive Step Size for Finite Family of Split Monotone Variational Inclusion and Fixed Point Problems in Banach Spaces, Demonstr. Math. 55 (2022), 193–216. https://doi.org/10.1515/dema-2022-0005.
- K. Sakurai, H. Iiduka, Acceleration of the Halpern Algorithm to Search for a Fixed Point of a Nonexpansive Mapping, Fixed Point Theory Appl. 2014 (2014), 202. https://doi.org/10.1186/1687-1812-2014-202.
- S. Suantai, P. Thongsri, A Fast Forward-Backward Algorithm Using Linesearch and Inertial Techniques for Convex Bi-Level Optimization Problems with Applications, Carpathian J. Math. 40 (2024), 769–788. https://doi.org/10.37193/CJM.2024.03.15.
- B. Tan, H.A. Abass, S. Li, O.K. Oyewole, Two Accelerated Double Inertial Algorithms for Variational Inequalities on Hadamard Manifolds, Commun. Nonlinear Sci. Numer. Simul. 145 (2025), 108734. https://doi.org/10.1016/j.cnsns.2025.108734.
- K. Tan, H. Xu, Approximating Fixed Points of Nonexpansive Mappings by the Ishikawa Iteration Process, J. Math. Anal. Appl. 178 (1993), 301–308. https://doi.org/10.1006/jmaa.1993.1309.
- R. Tibshirani, Regression Shrinkage and Selection Via the Lasso, J. R. Stat. Soc. Ser. B: Stat. Methodol. 58 (1996), 267–288. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x.
- P. Tseng, A Modified Forward-Backward Splitting Method for Maximal Monotone Mappings, SIAM J. Control Optim. 38 (2000), 431–446. https://doi.org/10.1137/S0363012998338806.