Hyers-Ulam Stability of N-Dimensional Additive Functional Equation in Modular Spaces Using Fixed Point Method
Main Article Content
Abstract
The Hyers–Ulam stability of functional equations is a subject of mathematical research that examines the approximate validity of these equations. This notion investigates if a function that nearly fulfills a specified functional equation must be near a precise solution of that equation. Numerous research have investigated this domain, examining the stability of diverse functional equations under varying situations. In this present work, we investigated Hyers-Ulam stability of a n-dimensional additive functional equation in modular spaces using the fixed point approach with the help of Fatou property.
Article Details
References
- Y. Almalki, B. Radhakrishnan, U. Jayaraman, K. Tamilvanan, Some Common Fixed Point Results in Modular Ultrametric Space Using Various Contractions and Their Application to Well-Posedness, Mathematics 11 (2023), 4077. https://doi.org/10.3390/math11194077.
- T. Aoki, On the Stability of the Linear Transformation in Banach Spaces., J. Math. Soc. Jpn. 2 (1950), 64–66. https://doi.org/10.2969/jmsj/00210064.
- Lj. B. Ciri´c, A Generalization of Banach’s Contraction Principle, Proc. Amer. Math. Soc. 45 (1974), 267–273. ´
- T. Dominguez-Benavides, M.A. Khamsi, S. Samadi, Asymptotically Regular Mappings in Modular Function Spaces, Sci. Math. Jpn. 53 (2001), 295–304.
- T. Dominguez Benavides, M. Khamsi, S. Samadi, Uniformly Lipschitzian Mappings in Modular Function Spaces, Nonlinear Anal.: Theory Methods Appl. 46 (2001), 267–278. https://doi.org/10.1016/s0362-546x(00)00117-6.
- E. Guariglia, K. Tamilvanan, On the Stability of Radical Septic Functional Equations, Mathematics 8 (2020), 2229. https://doi.org/10.3390/math8122229.
- G. Senthil, N. Vijaya, S. Gayathri, P. Vijayalakshmi, M. Balamurugan, S. Karthikeyan, Hyers-ulam Stability of Quartic Functional Equation in IFN-Spaces and 2-Banach Spaces by Classical Methods, Int. J. Anal. Appl. 23 (2025), 68. https://doi.org/10.28924/2291-8639-23-2025-68.
- G. Senthil, A.P. Pushpalatha, N. Vijaya, V.S. Devi, M. Balamurugan, A. Ramachandran, K. Tamilvanan, Ulam Stability of Quadratic Mapping Connected with Homomorphisms and Derivations in Non-Archimedean Banach Algebras, Int. J. Anal. Appl. 23 (2025), 119. https://doi.org/10.28924/2291-8639-23-2025-119.
- D.H. Hyers, On the Stability of the Linear Functional Equation, Proc. Natl. Acad. Sci. 27 (1941), 222–224. https://doi.org/10.1073/pnas.27.4.222.
- M.A. Khamsi, W.M. Kozlowski, Fixed Point Theory in Modular Function Spaces, Springer, Cham, 2015. https://doi.org/10.1007/978-3-319-14051-3.
- M. Khamsi, Quasicontraction Mappings in Modular Spaces Without ∆2-Condition, Fixed Point Theory Appl. 2008 (2008), 916187. https://doi.org/10.1155/2008/916187.
- S.O. Kim, K. Tamilvanan, Fuzzy Stability Results of Generalized Quartic Functional Equations, Mathematics 9 (2021), 120. https://doi.org/10.3390/math9020120.
- S.S. Kim, J.M. Rassias, S.H. Kim, A Fixed Point Approach to the Stability of a Nonic Functional Equation in Modular Spaces, WSEAS Trans. Math. 17 (2018), 130–136.
- S. Koshi, T. Shimogaki, On F-Norms of Quasi-Modular Spaces, J. Fac. Sci. Hokkaido Univ. Ser. I 15 (1961), 202–218.
- W.M. Kozlowski, Modular Function Spaces, Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, Inc., New York, 1988.
- M. Krbec, Modular Interpolation Spaces I, Z. Anal. Anwend. 1 (1982), 25–40. https://doi.org/10.4171/zaa/3.
- W.A.J. Luxemburg, Banach Function Spaces, Thesis, Technische Hogeschool te Delft, 1955.
- L. Maligranda, Orlicz Spaces and Interpolation, Seminários de Matemática, Universidade Estadual de Campinas, Departamento de Matemática, Campinas, 1989.
- S.A. Mohiuddine, K. Tamilvanan, M. Mursaleen, T. Alotaibi, Stability of Quartic Functional Equation in Modular Spaces via Hyers and Fixed-Point Methods, Mathematics 10 (2022), 1938. https://doi.org/10.3390/math10111938.
- J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1983.
- H. Nakano, Modulared Semi-Ordered Linear Spaces, Maruzen Co., Ltd., Tokyo, 1950.
- W. Orlicz, Collected papers. Part I, II, PWN–Polish Scientific Publishers, Warsaw, 1988.
- T.M. Rassias, On the Stability of the Linear Mapping in Banach Spaces, Proc. Amer. Math. Soc. 72 (1978), 297–300.
- A. Razani, S.H. Pour, E. Nabizadeh, M.B. Mohamadi, A New Version of the Ciri´c Quasi-Contraction Principle in ´ the Modular Space, Novi Sad J. Math. 43 (2013), 1–9.
- G. Sadeghi, A Fixed Point Approach to Stability of Functional Equations in Modular Spaces, Bull. Malays. Math. Sci. Soc. (2) 37 (2014), 333–344.
- K. Tamilvanan, A.H. Alkhaldi, J. Jakhar, R. Chugh, J. Jakhar, J.M. Rassias, Ulam Stability Results of Functional Equations in Modular Spaces and 2-Banach Spaces, Mathematics 11 (2023), 371. https://doi.org/10.3390/math11020371.
- K. Tamilvanan, N. Revathi, A.C. Sagayaraj, Approximate Finite Dimensional AdditiveMappings inModular Spaces by Fixed Point Method, in: Measure of Noncompactness, Fixed Point Theorems, and Applications, Chapman and Hall/CRC, 2024.
- P. Turpin, Fubini Inequalities and Bounded Multiplier Property in Generalized Modular Spaces, Comment. Math. 1 (1978), 331–353.
- S.M. Ulam, Problems in Modern Mathematics, Wiley, New York, (1964).
- N. Uthirasamy, K. Tamilvanan, H.K. Nashine, R. George, Solution and Stability of Quartic Functional Equations in Modular Spaces by Using Fatou Property, J. Funct. Spaces 2022 (2022), 5965628. https://doi.org/10.1155/2022/5965628.
- K. Wongkum, P. Chaipunya, P. Kumam, On the Generalized Ulam-Hyers-Rassias Stability of Quadratic Mappings in Modular Spaces Without ∆2-Conditions, J. Funct. Spaces 2015 (2015), 461719. https://doi.org/10.1155/2015/461719.
- S. Yamamuro, On Conjugate Spaces of Nakano Spaces, Trans. Amer. Math. Soc. 90 (1959), 291–311.
- G. Zamani Eskandani, J.M. Rassias, Stability of General A-Cubic Functional Equations in Modular Spaces, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 112 (2018), 425–435.
- S. Zolfaghari, A. Ebadian, S. Ostadbashi, M. De La Sen, M.E. Gordji, A Fixed Point Approach to the Hyers-Ulam Stability of an AQ Functional Equation in Probabilistic Modular Spaces, Int. J. Nonlinear Anal. Appl. 4 (2013), 89–101.