Hyers-Ulam Stability of N-Dimensional Additive Functional Equation in Modular Spaces Using Fixed Point Method

Main Article Content

Gowri Senthil, S. Sudharsan, V. Banu Priya, S. Annadurai, G. Ganapathy, A. Vijayalakshmi

Abstract

The Hyers–Ulam stability of functional equations is a subject of mathematical research that examines the approximate validity of these equations. This notion investigates if a function that nearly fulfills a specified functional equation must be near a precise solution of that equation. Numerous research have investigated this domain, examining the stability of diverse functional equations under varying situations. In this present work, we investigated Hyers-Ulam stability of a n-dimensional additive functional equation in modular spaces using the fixed point approach with the help of Fatou property.

Article Details

References

  1. Y. Almalki, B. Radhakrishnan, U. Jayaraman, K. Tamilvanan, Some Common Fixed Point Results in Modular Ultrametric Space Using Various Contractions and Their Application to Well-Posedness, Mathematics 11 (2023), 4077. https://doi.org/10.3390/math11194077.
  2. T. Aoki, On the Stability of the Linear Transformation in Banach Spaces., J. Math. Soc. Jpn. 2 (1950), 64–66. https://doi.org/10.2969/jmsj/00210064.
  3. Lj. B. Ciri´c, A Generalization of Banach’s Contraction Principle, Proc. Amer. Math. Soc. 45 (1974), 267–273. ´
  4. T. Dominguez-Benavides, M.A. Khamsi, S. Samadi, Asymptotically Regular Mappings in Modular Function Spaces, Sci. Math. Jpn. 53 (2001), 295–304.
  5. T. Dominguez Benavides, M. Khamsi, S. Samadi, Uniformly Lipschitzian Mappings in Modular Function Spaces, Nonlinear Anal.: Theory Methods Appl. 46 (2001), 267–278. https://doi.org/10.1016/s0362-546x(00)00117-6.
  6. E. Guariglia, K. Tamilvanan, On the Stability of Radical Septic Functional Equations, Mathematics 8 (2020), 2229. https://doi.org/10.3390/math8122229.
  7. G. Senthil, N. Vijaya, S. Gayathri, P. Vijayalakshmi, M. Balamurugan, S. Karthikeyan, Hyers-ulam Stability of Quartic Functional Equation in IFN-Spaces and 2-Banach Spaces by Classical Methods, Int. J. Anal. Appl. 23 (2025), 68. https://doi.org/10.28924/2291-8639-23-2025-68.
  8. G. Senthil, A.P. Pushpalatha, N. Vijaya, V.S. Devi, M. Balamurugan, A. Ramachandran, K. Tamilvanan, Ulam Stability of Quadratic Mapping Connected with Homomorphisms and Derivations in Non-Archimedean Banach Algebras, Int. J. Anal. Appl. 23 (2025), 119. https://doi.org/10.28924/2291-8639-23-2025-119.
  9. D.H. Hyers, On the Stability of the Linear Functional Equation, Proc. Natl. Acad. Sci. 27 (1941), 222–224. https://doi.org/10.1073/pnas.27.4.222.
  10. M.A. Khamsi, W.M. Kozlowski, Fixed Point Theory in Modular Function Spaces, Springer, Cham, 2015. https://doi.org/10.1007/978-3-319-14051-3.
  11. M. Khamsi, Quasicontraction Mappings in Modular Spaces Without ∆2-Condition, Fixed Point Theory Appl. 2008 (2008), 916187. https://doi.org/10.1155/2008/916187.
  12. S.O. Kim, K. Tamilvanan, Fuzzy Stability Results of Generalized Quartic Functional Equations, Mathematics 9 (2021), 120. https://doi.org/10.3390/math9020120.
  13. S.S. Kim, J.M. Rassias, S.H. Kim, A Fixed Point Approach to the Stability of a Nonic Functional Equation in Modular Spaces, WSEAS Trans. Math. 17 (2018), 130–136.
  14. S. Koshi, T. Shimogaki, On F-Norms of Quasi-Modular Spaces, J. Fac. Sci. Hokkaido Univ. Ser. I 15 (1961), 202–218.
  15. W.M. Kozlowski, Modular Function Spaces, Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, Inc., New York, 1988.
  16. M. Krbec, Modular Interpolation Spaces I, Z. Anal. Anwend. 1 (1982), 25–40. https://doi.org/10.4171/zaa/3.
  17. W.A.J. Luxemburg, Banach Function Spaces, Thesis, Technische Hogeschool te Delft, 1955.
  18. L. Maligranda, Orlicz Spaces and Interpolation, Seminários de Matemática, Universidade Estadual de Campinas, Departamento de Matemática, Campinas, 1989.
  19. S.A. Mohiuddine, K. Tamilvanan, M. Mursaleen, T. Alotaibi, Stability of Quartic Functional Equation in Modular Spaces via Hyers and Fixed-Point Methods, Mathematics 10 (2022), 1938. https://doi.org/10.3390/math10111938.
  20. J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1983.
  21. H. Nakano, Modulared Semi-Ordered Linear Spaces, Maruzen Co., Ltd., Tokyo, 1950.
  22. W. Orlicz, Collected papers. Part I, II, PWN–Polish Scientific Publishers, Warsaw, 1988.
  23. T.M. Rassias, On the Stability of the Linear Mapping in Banach Spaces, Proc. Amer. Math. Soc. 72 (1978), 297–300.
  24. A. Razani, S.H. Pour, E. Nabizadeh, M.B. Mohamadi, A New Version of the Ciri´c Quasi-Contraction Principle in ´ the Modular Space, Novi Sad J. Math. 43 (2013), 1–9.
  25. G. Sadeghi, A Fixed Point Approach to Stability of Functional Equations in Modular Spaces, Bull. Malays. Math. Sci. Soc. (2) 37 (2014), 333–344.
  26. K. Tamilvanan, A.H. Alkhaldi, J. Jakhar, R. Chugh, J. Jakhar, J.M. Rassias, Ulam Stability Results of Functional Equations in Modular Spaces and 2-Banach Spaces, Mathematics 11 (2023), 371. https://doi.org/10.3390/math11020371.
  27. K. Tamilvanan, N. Revathi, A.C. Sagayaraj, Approximate Finite Dimensional AdditiveMappings inModular Spaces by Fixed Point Method, in: Measure of Noncompactness, Fixed Point Theorems, and Applications, Chapman and Hall/CRC, 2024.
  28. P. Turpin, Fubini Inequalities and Bounded Multiplier Property in Generalized Modular Spaces, Comment. Math. 1 (1978), 331–353.
  29. S.M. Ulam, Problems in Modern Mathematics, Wiley, New York, (1964).
  30. N. Uthirasamy, K. Tamilvanan, H.K. Nashine, R. George, Solution and Stability of Quartic Functional Equations in Modular Spaces by Using Fatou Property, J. Funct. Spaces 2022 (2022), 5965628. https://doi.org/10.1155/2022/5965628.
  31. K. Wongkum, P. Chaipunya, P. Kumam, On the Generalized Ulam-Hyers-Rassias Stability of Quadratic Mappings in Modular Spaces Without ∆2-Conditions, J. Funct. Spaces 2015 (2015), 461719. https://doi.org/10.1155/2015/461719.
  32. S. Yamamuro, On Conjugate Spaces of Nakano Spaces, Trans. Amer. Math. Soc. 90 (1959), 291–311.
  33. G. Zamani Eskandani, J.M. Rassias, Stability of General A-Cubic Functional Equations in Modular Spaces, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 112 (2018), 425–435.
  34. S. Zolfaghari, A. Ebadian, S. Ostadbashi, M. De La Sen, M.E. Gordji, A Fixed Point Approach to the Hyers-Ulam Stability of an AQ Functional Equation in Probabilistic Modular Spaces, Int. J. Nonlinear Anal. Appl. 4 (2013), 89–101.