Vanishing Theorems, Support Conditions, and Boundary Problems for \(\overline\partial\) on Weak Z(q) Domains
Main Article Content
Abstract
Let \( X \) be a complex manifold of complex dimension \( n \geq 2 \), and let \( \Omega \Subset \mathcal{X} \) be a relatively compact domain with smooth boundary that satisfies the weak \( Z(q) \)-condition. Assume \( \mathcal{F} \) is a holomorphic line bundle over \( X \), and denote by \( \mathcal{F}^{\otimes m} \) its \( m \)-th tensor power for some positive integer \( m \). Provided there exists a strongly plurisubharmonic function defined in a neighborhood of the boundary \( b\Omega \), it is possible to obtain solutions to the \( \overline{\partial} \)-equation within \( \Omega \), under support conditions, for \((p,q)\)-forms with \( q \geq 1 \) taking values in \( \mathcal{F}^{\otimes m} \). Additionally, we study the solvability of the boundary \( \overline{\partial}_b \)-problem on weak \( Z(q) \)-domains with smooth boundary in the setting of Kähler manifolds. Moreover, an extension theorem for \( \overline{\partial}_b \)-closed differential forms will be proven.
Article Details
References
- M. Derridj, Regularité pour ¯∂ dans Quelques Domaines Faiblement Pseudo-Convexes, J. Differ. Geom. 13 (1978), 559–576. https://doi.org/10.4310/jdg/1214434708.
- M. Shaw, Local Existence Theorems with Estimates for ¯∂b on Weakly Pseudo-convex CR Manifolds, Math. Ann. 294 (1992), 677–700. https://doi.org/10.1007/bf01934348.
- J. Cao, M.C. Shaw, L. Wang, Estimates for the ∂-Neumann Problem and Nonexistence of C2 Levi-Flat Hypersurfaces in Pn , Math. Z. 248 (2004), 183–221. https://doi.org/10.1007/s00209-004-0661-0.
- S. Sambou, Résolution du ∂ pour les Courants Prolongeables Définis dans un Anneau, Ann. Fac. Sci. Toulouse Math. 11 (2002), 105–129. https://doi.org/10.5802/afst.1020.
- O. Abdelkader, S. Saber, The ∂-Neumann Operator on Strongly Pseudoconvex Domain with Piecewise Smooth Boundary, Math. Slovaca 55 (2005), 317–328. https://eudml.org/doc/32121.
- O. Abdelkader, S. Saber, Vanishing Theorems on Strongly q-Convex Manifolds, Int. J. Geom. Methods Mod. Phys. 02 (2005), 467–483. https://doi.org/10.1142/s0219887805000569.
- O. Abdelkader, S. Saber, Solution to ∂-Equations with Exact Support on Pseudo-Convex Manifolds, Int. J. Geom. Methods Mod. Phys. 04 (2007), 339–348. https://doi.org/10.1142/s0219887807002090.
- S. Saber, Solution to ∂ Problem with Exact Support and Regularity for the ∂-Neumann Operator on Weakly q-Convex Domains, Int. J. Geom. Methods Mod. Phys. 07 (2010), 135–142. https://doi.org/10.1142/s0219887810003963.
- S. Saber, The ∂-Neumann Operator on Lipschitz q-Pseudoconvex Domains, Czechoslov. Math. J. 61 (2011), 721–731. https://doi.org/10.1007/s10587-011-0021-2.
- S. Saber, The L2 ∂-Cauchy Problem on Weakly q-pseudoconvex Domains in Stein Manifolds, Czechoslov. Math. J. 65 (2015), 739–745. https://doi.org/10.1007/s10587-015-0205-2.
- S. Saber, The L2 ∂-Cauchy Problem on Pseudoconvex Domains and Applications, Asian-Eur. J. Math. 11 (2018), 1850025. https://doi.org/10.1142/s1793557118500250.
- L. Hörmander, L2 Estimates and Existence Theorems for the ¯∂ Operator, Acta Math. 113 (1965), 89–152. https://doi.org/10.1007/bf02391775.
- G.B. Folland, J.J. Kohn, The Neumann Problem for the Cauchy-Riemann Complex, Princeton University Press, 1972.
- T. Ohsawa, On the Extension L2 Holomorphic Functions III: Negligible Weights, Math. Z. 219 (1995), 215–225. https://doi.org/10.1007/bf02572360.
- T. Ohsawa, Pseudoconvex Domains in Pn: A Question on the 1-Convex Boundary Points, in: G. Komatsu, M. Kuranishi (Eds.), Analysis and Geometry in Several Complex Variables, Birkhäuser Boston, Boston, MA, 1999: pp. 239–252. https://doi.org/10.1007/978-1-4612-2166-1_11.
- K. Kodaira, On Kähler Varieties of Restricted Type (An Intrinsic Characterization of Algebraic Varieties), Ann. Math. 60 (1954), 28–48.
- K. Kodaira, Complex Manifolds and Deformation of Complex Structures, Springer, 1986.
- E. Vesentini, Lectures on Levi Convexity of Complex Manifolds and Cohomology Vanishing Theorems, Tata Institute of Fundamental Research, Bombay, 1967.
- P.A. Griffiths, The Extension Problem in Complex Analysis II; Embeddings with Positive Normal Bundle, Amer. J. Math. 88 (1966), 366–446. https://doi.org/10.2307/2373200.
- H. Grauert, I. Lieb, Das Ramirezsche Integral und die Lösung der Gleichung ∂f=α im Bereich der Beschränkten Formen, Rice Inst. Pamph. - Rice Univ. Stud. 56 (1970), 29–50. https://hdl.handle.net/1911/63010.
- X. Yang, RC-Positivity, Rational Connectedness and Yau’s Conjecture, Cambridge J. Math. 6 (2018), 183–212. https://doi.org/10.4310/CJM.2018.v6.n2.a2.
- A. Andreotti, E. Vesentini, Carleman Estimates for the Laplace-beltrami Equation on Complex Manifolds, Publ. Math. Inst. Hautes Études Sci. 25 (1965), 81–130. https://doi.org/10.1007/bf02684398.
- L. Ho, The ∂-Problem on Weak Z(q) Domains, Math. Ann. 290 (1991), 3–18.
- S. Saber, Solvability of the Tangential Cauchy-Riemann Equations on Boundaries of Strictly q-Convex Domains, Lobachevskii J. Math. 32 (2011), 189–193. https://doi.org/10.1134/S1995080211030115.
- S. Saber, Global Boundary Regularity for the ∂-Problem on Strictly Q-convex and Q-concave Domains, Complex Anal. Oper. Theory 6 (2010), 1157–1165. https://doi.org/10.1007/s11785-010-0114-1.
- S. Saber, Solution to ∂ Problem for Smooth Forms and Currents on Strictly q-Convex Domains, Int. J. Geom. Methods Mod. Phys. 9 (2012), 1220002. https://doi.org/10.1142/S0219887812200022.
- S. Saber, The ¯∂-Problem on q-Pseudoconvex Domains with Applications, Math. Slovaca 63 (2013), 521–530. https://doi.org/10.2478/s12175-013-0115-4.
- S. Saber, The L 2 ∂-Cauchy Problem on Weakly q-Pseudoconvex Domains in Stein Manifolds, Czech. Math. J. 65 (2015), 739–745. https://doi.org/10.1007/s10587-015-0205-2.
- S. Saber, Global Regularity for ∂ on an Annulus between Two Weakly Convex Domains, Boll. Unione Mat. Ital. 11 (2018), 309–314. https://doi.org/10.1007/s40574-017-0135-z.
- S. Saber, The ∂-Problem With Support Conditions and Pseudoconvexity of General Order in Kähler Manifolds, J. Korean Math. Soc. 53 (2016), 1211–1223. https://doi.org/10.4134/JKMS.J140768.
- S. Saber, Global Solution for the ∂-Problem on Non Pseudoconvex Domains in Stein Manifolds, J. Korean Math. Soc. 54 (2017), 1787–1799. https://doi.org/10.4134/JKMS.J160668.
- S. Saber, Sobolev Regularity of the Bergman Projection on Certain Pseudoconvex Domains, Trans. A. Razmadze Math. Inst. 171 (2017), 90–102. https://doi.org/10.1016/j.trmi.2016.10.004.
- S. Saber, The L 2 ∂-Cauchy Problem on Pseudoconvex Domains and Applications, Asian-Eur. J. Math. 11 (2018), 1850025. https://doi.org/10.1142/S1793557118500250.
- S. Saber, Global Regularity for ∂ on an Annulus between Two Weakly Convex Domains, Boll. Unione Mat. Ital. 11 (2018), 309–314. https://doi.org/10.1007/s40574-017-0135-z.
- S. Saber, Solution to ∂-Problem with Support Conditions in Weakly q-Convex Domains, Commun. Korean Math. Soc. 33 (2018), 409–421. https://doi.org/10.4134/CKMS.C170022.
- S. Saber, Compactness of the Canonical Solution Operator on Lipschitz q-Pseudoconvex Boundaries, Electron. J. Differ. Equ. 2019 (2019), 48.
- S. Saber, Compactness of the Complex Green Operator in a Stein Manifold, U.P.B. Sci. Bull. Ser. A 81 (2019), 185–200.
- S. Saber, Compactness of the Weighted dbar-Neumann Operator and Commutators of the Bergman Projection with Continuous Functions, J. Geom. Phys. 138 (2019), 194–205. https://doi.org/10.1016/j.geomphys.2018.12.022.
- S. Saber, Compactness of the Commutators of Toeplitz Operators on q-Pseudoconvex Domains, Electron. J. Differ. Equ. 2018 (2018), 111.
- S. Saber, Global Solvability and Regularity for ∂ on an Annulus between Two Weakly Convex Domains Which Satisfy Property (P), Asian-Eur. J. Math. 12 (2019), 1950041. https://doi.org/10.1142/S1793557119500414.
- S. Saber, L 2 Estimates and Existence Theorems for ∂b on Lipschitz Boundaries of Q-Pseudoconvex Domains, Comptes Rendus. Mathématique 358 (2020), 435–458. https://doi.org/10.5802/crmath.43.
- S. Saber, The ∂-Cauchy Problem on Weakly q-Convex Domains in CPn , Kragujevac J. Math. 44 (2020), 581–591. https://doi.org/10.46793/KgJMat2004.581S.
- S. Saber, A. Alahmari, Global Regularity of ∂ on Certain Pseudoconvexity, Trans. A. Razmadze Math. Inst. 175 (2021), 417–427.
- S. Saber, On the Applications of Bochner-Kodaira-Morrey-Kohn Identity, Kragujevac J. Math. 45 (2021), 881–896. https://doi.org/10.46793/KgJMat2106.881S.
- H.D.S. Adam, K.I.A. Ahmed, S. Saber, M. Marin, Sobolev Estimates for the ∂ and the ∂-Neumann Operator on Pseudoconvex Manifolds, Mathematics 11 (2023), 4138. https://doi.org/10.3390/math11194138.
- H.D.S. Adam, K.I. Adam, S. Saber, G. Farid, Existence Theorems for the dbar Equation and Sobolev Estimates on q-Convex Domains, AIMS Math. 8 (2023), 31141–31157. https://doi.org/10.3934/math.20231594.
- S. Saber, A. Alahmari, Compactness Estimate for the ∂-Neumann Problem on a q-Pseudoconvex Domain in a Stein Manifold, Kragujevac J. Math. 47 (2023), 627–636.
- S. Saber, M. Youssif, Y. Arko, et al. Subellipticity, Compactness, H Estimates and Regularity for ¯∂ on Weakly q-Pseudoconvex/Concave Domains, Rend. Semin. Mat. Univ. Padova (2024). https://doi.org/10.4171/rsmup/160.
- S. Saber, A.A. Alahmari, Generalization of Kodaira’s Embedding Theorem for Compact Kähler Manifolds with Semi-positive Chern Class, Int. J. Anal. Appl. 23 (2025), 72. https://doi.org/10.28924/2291-8639-23-2025-72.
- G.M. Henkin, A. Iordan, Regularity of ∂ on Pseudoconcave Compacts and Applications, Asian J. Math. 4 (2000), 855–884. https://doi.org/10.4310/ajm.2000.v4.n4.a9.
- K. Takegoshi, On Weakly 1-complete Surfaces Without Non-constant Holomorphic Functions, Publ. Res. Inst. Math. Sci. 18 (1982), 1175–1183. https://doi.org/10.2977/prims/1195183302.
- K. Takegoshi, Representation Theorems of Cohomology on Weakly 1-complete Manifolds, Publ. Res. Inst. Math. Sci. 18 (1982), 131–186. https://doi.org/10.2977/prims/1195183572.
- K. Takegoshi, Global Regularity and Spectra of Laplace-Beltrami Operators on Pseudoconvex Domains, Publ. Res. Inst. Math. Sci. 19 (1983), 275–304.