Vanishing Theorems, Support Conditions, and Boundary Problems for \(\overline\partial\) on Weak Z(q) Domains

Main Article Content

Sayed Saber, Abdullah A. Alahmari

Abstract

Let \( X \) be a complex manifold of complex dimension \( n \geq 2 \), and let \( \Omega \Subset \mathcal{X} \) be a relatively compact domain with smooth boundary that satisfies the weak \( Z(q) \)-condition. Assume \( \mathcal{F} \) is a holomorphic line bundle over \( X \), and denote by \( \mathcal{F}^{\otimes m} \) its \( m \)-th tensor power for some positive integer \( m \). Provided there exists a strongly plurisubharmonic function defined in a neighborhood of the boundary \( b\Omega \), it is possible to obtain solutions to the \( \overline{\partial} \)-equation within \( \Omega \), under support conditions, for \((p,q)\)-forms with \( q \geq 1 \) taking values in \( \mathcal{F}^{\otimes m} \). Additionally, we study the solvability of the boundary \( \overline{\partial}_b \)-problem on weak \( Z(q) \)-domains with smooth boundary in the setting of Kähler manifolds. Moreover, an extension theorem for \( \overline{\partial}_b \)-closed differential forms will be proven.

Article Details

References

  1. M. Derridj, Regularité pour ¯∂ dans Quelques Domaines Faiblement Pseudo-Convexes, J. Differ. Geom. 13 (1978), 559–576. https://doi.org/10.4310/jdg/1214434708.
  2. M. Shaw, Local Existence Theorems with Estimates for ¯∂b on Weakly Pseudo-convex CR Manifolds, Math. Ann. 294 (1992), 677–700. https://doi.org/10.1007/bf01934348.
  3. J. Cao, M.C. Shaw, L. Wang, Estimates for the ∂-Neumann Problem and Nonexistence of C2 Levi-Flat Hypersurfaces in Pn , Math. Z. 248 (2004), 183–221. https://doi.org/10.1007/s00209-004-0661-0.
  4. S. Sambou, Résolution du ∂ pour les Courants Prolongeables Définis dans un Anneau, Ann. Fac. Sci. Toulouse Math. 11 (2002), 105–129. https://doi.org/10.5802/afst.1020.
  5. O. Abdelkader, S. Saber, The ∂-Neumann Operator on Strongly Pseudoconvex Domain with Piecewise Smooth Boundary, Math. Slovaca 55 (2005), 317–328. https://eudml.org/doc/32121.
  6. O. Abdelkader, S. Saber, Vanishing Theorems on Strongly q-Convex Manifolds, Int. J. Geom. Methods Mod. Phys. 02 (2005), 467–483. https://doi.org/10.1142/s0219887805000569.
  7. O. Abdelkader, S. Saber, Solution to ∂-Equations with Exact Support on Pseudo-Convex Manifolds, Int. J. Geom. Methods Mod. Phys. 04 (2007), 339–348. https://doi.org/10.1142/s0219887807002090.
  8. S. Saber, Solution to ∂ Problem with Exact Support and Regularity for the ∂-Neumann Operator on Weakly q-Convex Domains, Int. J. Geom. Methods Mod. Phys. 07 (2010), 135–142. https://doi.org/10.1142/s0219887810003963.
  9. S. Saber, The ∂-Neumann Operator on Lipschitz q-Pseudoconvex Domains, Czechoslov. Math. J. 61 (2011), 721–731. https://doi.org/10.1007/s10587-011-0021-2.
  10. S. Saber, The L2 ∂-Cauchy Problem on Weakly q-pseudoconvex Domains in Stein Manifolds, Czechoslov. Math. J. 65 (2015), 739–745. https://doi.org/10.1007/s10587-015-0205-2.
  11. S. Saber, The L2 ∂-Cauchy Problem on Pseudoconvex Domains and Applications, Asian-Eur. J. Math. 11 (2018), 1850025. https://doi.org/10.1142/s1793557118500250.
  12. L. Hörmander, L2 Estimates and Existence Theorems for the ¯∂ Operator, Acta Math. 113 (1965), 89–152. https://doi.org/10.1007/bf02391775.
  13. G.B. Folland, J.J. Kohn, The Neumann Problem for the Cauchy-Riemann Complex, Princeton University Press, 1972.
  14. T. Ohsawa, On the Extension L2 Holomorphic Functions III: Negligible Weights, Math. Z. 219 (1995), 215–225. https://doi.org/10.1007/bf02572360.
  15. T. Ohsawa, Pseudoconvex Domains in Pn: A Question on the 1-Convex Boundary Points, in: G. Komatsu, M. Kuranishi (Eds.), Analysis and Geometry in Several Complex Variables, Birkhäuser Boston, Boston, MA, 1999: pp. 239–252. https://doi.org/10.1007/978-1-4612-2166-1_11.
  16. K. Kodaira, On Kähler Varieties of Restricted Type (An Intrinsic Characterization of Algebraic Varieties), Ann. Math. 60 (1954), 28–48.
  17. K. Kodaira, Complex Manifolds and Deformation of Complex Structures, Springer, 1986.
  18. E. Vesentini, Lectures on Levi Convexity of Complex Manifolds and Cohomology Vanishing Theorems, Tata Institute of Fundamental Research, Bombay, 1967.
  19. P.A. Griffiths, The Extension Problem in Complex Analysis II; Embeddings with Positive Normal Bundle, Amer. J. Math. 88 (1966), 366–446. https://doi.org/10.2307/2373200.
  20. H. Grauert, I. Lieb, Das Ramirezsche Integral und die Lösung der Gleichung ∂f=α im Bereich der Beschränkten Formen, Rice Inst. Pamph. - Rice Univ. Stud. 56 (1970), 29–50. https://hdl.handle.net/1911/63010.
  21. X. Yang, RC-Positivity, Rational Connectedness and Yau’s Conjecture, Cambridge J. Math. 6 (2018), 183–212. https://doi.org/10.4310/CJM.2018.v6.n2.a2.
  22. A. Andreotti, E. Vesentini, Carleman Estimates for the Laplace-beltrami Equation on Complex Manifolds, Publ. Math. Inst. Hautes Études Sci. 25 (1965), 81–130. https://doi.org/10.1007/bf02684398.
  23. L. Ho, The ∂-Problem on Weak Z(q) Domains, Math. Ann. 290 (1991), 3–18.
  24. S. Saber, Solvability of the Tangential Cauchy-Riemann Equations on Boundaries of Strictly q-Convex Domains, Lobachevskii J. Math. 32 (2011), 189–193. https://doi.org/10.1134/S1995080211030115.
  25. S. Saber, Global Boundary Regularity for the ∂-Problem on Strictly Q-convex and Q-concave Domains, Complex Anal. Oper. Theory 6 (2010), 1157–1165. https://doi.org/10.1007/s11785-010-0114-1.
  26. S. Saber, Solution to ∂ Problem for Smooth Forms and Currents on Strictly q-Convex Domains, Int. J. Geom. Methods Mod. Phys. 9 (2012), 1220002. https://doi.org/10.1142/S0219887812200022.
  27. S. Saber, The ¯∂-Problem on q-Pseudoconvex Domains with Applications, Math. Slovaca 63 (2013), 521–530. https://doi.org/10.2478/s12175-013-0115-4.
  28. S. Saber, The L 2 ∂-Cauchy Problem on Weakly q-Pseudoconvex Domains in Stein Manifolds, Czech. Math. J. 65 (2015), 739–745. https://doi.org/10.1007/s10587-015-0205-2.
  29. S. Saber, Global Regularity for ∂ on an Annulus between Two Weakly Convex Domains, Boll. Unione Mat. Ital. 11 (2018), 309–314. https://doi.org/10.1007/s40574-017-0135-z.
  30. S. Saber, The ∂-Problem With Support Conditions and Pseudoconvexity of General Order in Kähler Manifolds, J. Korean Math. Soc. 53 (2016), 1211–1223. https://doi.org/10.4134/JKMS.J140768.
  31. S. Saber, Global Solution for the ∂-Problem on Non Pseudoconvex Domains in Stein Manifolds, J. Korean Math. Soc. 54 (2017), 1787–1799. https://doi.org/10.4134/JKMS.J160668.
  32. S. Saber, Sobolev Regularity of the Bergman Projection on Certain Pseudoconvex Domains, Trans. A. Razmadze Math. Inst. 171 (2017), 90–102. https://doi.org/10.1016/j.trmi.2016.10.004.
  33. S. Saber, The L 2 ∂-Cauchy Problem on Pseudoconvex Domains and Applications, Asian-Eur. J. Math. 11 (2018), 1850025. https://doi.org/10.1142/S1793557118500250.
  34. S. Saber, Global Regularity for ∂ on an Annulus between Two Weakly Convex Domains, Boll. Unione Mat. Ital. 11 (2018), 309–314. https://doi.org/10.1007/s40574-017-0135-z.
  35. S. Saber, Solution to ∂-Problem with Support Conditions in Weakly q-Convex Domains, Commun. Korean Math. Soc. 33 (2018), 409–421. https://doi.org/10.4134/CKMS.C170022.
  36. S. Saber, Compactness of the Canonical Solution Operator on Lipschitz q-Pseudoconvex Boundaries, Electron. J. Differ. Equ. 2019 (2019), 48.
  37. S. Saber, Compactness of the Complex Green Operator in a Stein Manifold, U.P.B. Sci. Bull. Ser. A 81 (2019), 185–200.
  38. S. Saber, Compactness of the Weighted dbar-Neumann Operator and Commutators of the Bergman Projection with Continuous Functions, J. Geom. Phys. 138 (2019), 194–205. https://doi.org/10.1016/j.geomphys.2018.12.022.
  39. S. Saber, Compactness of the Commutators of Toeplitz Operators on q-Pseudoconvex Domains, Electron. J. Differ. Equ. 2018 (2018), 111.
  40. S. Saber, Global Solvability and Regularity for ∂ on an Annulus between Two Weakly Convex Domains Which Satisfy Property (P), Asian-Eur. J. Math. 12 (2019), 1950041. https://doi.org/10.1142/S1793557119500414.
  41. S. Saber, L 2 Estimates and Existence Theorems for ∂b on Lipschitz Boundaries of Q-Pseudoconvex Domains, Comptes Rendus. Mathématique 358 (2020), 435–458. https://doi.org/10.5802/crmath.43.
  42. S. Saber, The ∂-Cauchy Problem on Weakly q-Convex Domains in CPn , Kragujevac J. Math. 44 (2020), 581–591. https://doi.org/10.46793/KgJMat2004.581S.
  43. S. Saber, A. Alahmari, Global Regularity of ∂ on Certain Pseudoconvexity, Trans. A. Razmadze Math. Inst. 175 (2021), 417–427.
  44. S. Saber, On the Applications of Bochner-Kodaira-Morrey-Kohn Identity, Kragujevac J. Math. 45 (2021), 881–896. https://doi.org/10.46793/KgJMat2106.881S.
  45. H.D.S. Adam, K.I.A. Ahmed, S. Saber, M. Marin, Sobolev Estimates for the ∂ and the ∂-Neumann Operator on Pseudoconvex Manifolds, Mathematics 11 (2023), 4138. https://doi.org/10.3390/math11194138.
  46. H.D.S. Adam, K.I. Adam, S. Saber, G. Farid, Existence Theorems for the dbar Equation and Sobolev Estimates on q-Convex Domains, AIMS Math. 8 (2023), 31141–31157. https://doi.org/10.3934/math.20231594.
  47. S. Saber, A. Alahmari, Compactness Estimate for the ∂-Neumann Problem on a q-Pseudoconvex Domain in a Stein Manifold, Kragujevac J. Math. 47 (2023), 627–636.
  48. S. Saber, M. Youssif, Y. Arko, et al. Subellipticity, Compactness, H Estimates and Regularity for ¯∂ on Weakly q-Pseudoconvex/Concave Domains, Rend. Semin. Mat. Univ. Padova (2024). https://doi.org/10.4171/rsmup/160.
  49. S. Saber, A.A. Alahmari, Generalization of Kodaira’s Embedding Theorem for Compact Kähler Manifolds with Semi-positive Chern Class, Int. J. Anal. Appl. 23 (2025), 72. https://doi.org/10.28924/2291-8639-23-2025-72.
  50. G.M. Henkin, A. Iordan, Regularity of ∂ on Pseudoconcave Compacts and Applications, Asian J. Math. 4 (2000), 855–884. https://doi.org/10.4310/ajm.2000.v4.n4.a9.
  51. K. Takegoshi, On Weakly 1-complete Surfaces Without Non-constant Holomorphic Functions, Publ. Res. Inst. Math. Sci. 18 (1982), 1175–1183. https://doi.org/10.2977/prims/1195183302.
  52. K. Takegoshi, Representation Theorems of Cohomology on Weakly 1-complete Manifolds, Publ. Res. Inst. Math. Sci. 18 (1982), 131–186. https://doi.org/10.2977/prims/1195183572.
  53. K. Takegoshi, Global Regularity and Spectra of Laplace-Beltrami Operators on Pseudoconvex Domains, Publ. Res. Inst. Math. Sci. 19 (1983), 275–304.