Neutrosophic Statistics with Outliers Data: Utilizing Neutrosophic Median Absolute Deviation to Estimate the Mean Parameter Using Neutrosophic Modified One Step M-Estimator
Main Article Content
Abstract
Classical statistical methods rely on precise data to estimate population means using auxiliary information but often face issues like bias and high mean squared error (MSE). Neutrosophic statistics extend classical approaches by incorporating vague, indeterminate, and uncertain data. This study introduces the Modified One-Step M-estimator (NMOM), which utilizes auxiliary information to improve estimation accuracy. The Neutrosophic Median Absolute Deviation (NMAD) is also employed to measure robustness against outliers and uncertainty. Empirical studies and simulations compare NMOM with the Neutrosophic Standard Mean (NSM) using metrics such as mean, median, standard deviation, covariance, NMAD, number of outliers, and NMSE. Results show that NMOM is more robust than NSM, particularly in managing outliers, reducing variance, and achieving lower MSE. The use of NMAD strengthens NMOM’s ability to produce reliable estimates under uncertain data conditions. This highlights NMOM’s effectiveness in fields like finance, engineering, and medicine, where data imprecision is a key concern.
Article Details
References
- D.P. Filev, Klir and Yuan's Fuzzy Sets and Fuzzy Logic, J. Intell. Fuzzy Syst. 4 (1996), 175-176. https://doi.org/10.3233/ifs-1996-4208.
- F. Smarandache, Definiton of Neutrosophic Logic - A Generalization of the Intuitionistic Fuzzy Logic, in: 3rd Conference of the European Society for Fuzzy Logic and Technology, Zittau, Germany, pp. 141-146, 2003.
- M.B. Anwar, M. Hanif, U. Shahzad, W. Emam, M.M. Anas, N. Ali, S. Shahzadi, Incorporating the Neutrosophic Framework into Kernel Regression for Predictive Mean Estimation, Heliyon 10 (2024), e25471. https://doi.org/10.1016/j.heliyon.2024.e25471.
- H. Abbasi, U. Shahzad, W. Emam, M. Hanif, N. Ali, M. Mukhtar, Calibrated Empirical Neutrosophic Cumulative Distribution Function Estimation for Both Symmetric and Asymmetric Data, Symmetry 16 (2024), 633. https://doi.org/10.3390/sym16050633.
- H. Abbasi, U. Shahzad, W. Emam, M. Hanif, N. Ali, M. Mukhtar, Calibrated Empirical Neutrosophic Cumulative Distribution Function Estimation for Both Symmetric and Asymmetric Data, Symmetry 16 (2024), 633. https://doi.org/10.3390/sym16050633.
- R. Singh, A. Kumari, Neutrosophic Ranked Set Sampling Scheme for Estimating Population Mean: An Application to Demographic Data, Neutrosophic Sets Syst. 68 (2024), 246–270. https://doi.org/10.5281/zenodo.11479519.
- R. Singh, S.N. Tiwari, Improved Estimator for Population Mean Utilizing Known Medians of Two Auxiliary Variables Under Neutrosophic Framework, Neutrosophic Syst. Appl. 25 (2025), 38-52. https://doi.org/10.61356/j.nswa.2025.25443.
- Z. Tahir, H. Khan, M. Aslam, J. Shabbir, Y. Mahmood, F. Smarandache, Neutrosophic Ratio-Type Estimators for Estimating the Population Mean, Complex Intell. Syst. 7 (2021), 2991-3001. https://doi.org/10.1007/s40747-021-00439-1.
- P. Poonam, P. Singh, P. Sharma, B. Aloraini, Estimation of Population Mean Using Neutrosophic Exponential Estimators with Application to Real Data, Int. J. Neutrosophic Sci. 25 (2025), 322-338. https://doi.org/10.54216/ijns.250329.
- A. Kumari, R. Singh, F. Smarandache, New Modification of Ranked Set Sampling for Estimating Population Mean: Neutrosophic Median Ranked Set Sampling with an Application to Demographic Data, Int. J. Comput. Intell. Syst. 17 (2024), 210. https://doi.org/10.1007/s44196-024-00548-y.
- M. Aslam, Introducing Grubbs’s Test for Detecting Outliers Under Neutrosophic Statistics – An Application to Medical Data, J. King Saud Univ. - Sci. 32 (2020), 2696-2700. https://doi.org/10.1016/j.jksus.2020.06.003.
- C. Leys, C. Ley, O. Klein, P. Bernard, L. Licata, Detecting Outliers: Do Not Use Standard Deviation Around the Mean, Use Absolute Deviation Around the Median, J. Exp. Soc. Psychol. 49 (2013), 764-766. https://doi.org/10.1016/j.jesp.2013.03.013.
- R.R. Wilcox, H.J. Keselman, Modern Robust Data Analysis Methods: Measures of Central Tendency, Psychol. Methods 8 (2003), 254-274. https://doi.org/10.1037/1082-989x.8.3.254.
- O. Owolabi, D. Okoh, B. Rabiu, A. Obafaye, K. Dauda, A Median Absolute Deviation-Neural Network (MAD-NN) Method for Atmospheric Temperature Data Cleaning, MethodsX 8 (2021), 101533. https://doi.org/10.1016/j.mex.2021.101533.
- S. Mazumder, R. Serfling, Bahadur Representations for the Median Absolute Deviation and Its Modifications, Stat. Probab. Lett. 79 (2009), 1774-1783. https://doi.org/10.1016/j.spl.2009.05.006.
- D.C. Howell, Median Absolute Deviation, Encycl. Stat. Behav. Sci. (2005). https://doi.org/10.1002/0470013192.bsa384.
- P.J. Huber, Minimax Aspects of Bounded-Influence Regression, J. Am. Stat. Assoc. 78 (1983), 66-72. https://doi.org/10.1080/01621459.1983.10477928.
- A.R. Othman, H. Keselman, A.R. Padmanabhan, R.R. Wilcox, K. Fradette, Comparing Measures of the ‘Typical’ Score Across Treatment Groups, Br. J. Math. Stat. Psychol. 57 (2004), 215-234. https://doi.org/10.1348/0007110042307159.
- S.S.S. Abd Mutalib, S.Z. Satari, W.N.S. Wan Yusoff, A New Robust Estimator to Detect Outliers for Multivariate Data, J. Phys.: Conf. Ser. 1366 (2019), 012104. https://doi.org/10.1088/1742-6596/1366/1/012104.
- J. Chen, J. Ye, S. Du, Scale Effect and Anisotropy Analyzed for Neutrosophic Numbers of Rock Joint Roughness Coefficient Based on Neutrosophic Statistics, Symmetry 9 (2017), 208. https://doi.org/10.3390/sym9100208.
- R.R. Wilcox, H.J. Keselman, Modern Robust Data Analysis Methods: Measures of Central Tendency., Psychol. Methods 8 (2003), 254-274. https://doi.org/10.1037/1082-989x.8.3.254.
- H.M. Almongy, E.M. Almetwally, H.M. Aljohani, A.S. Alghamdi, E. Hafez, A New Extended Rayleigh Distribution with Applications of Covid-19 Data, Results Phys. 23 (2021), 104012. https://doi.org/10.1016/j.rinp.2021.104012.
- Z. Mi, S. Hussain, C. Chesneau, On a Special Weighted Version of the Odd Weibull-Generated Class of Distributions, Math. Comput. Appl. 26 (2021), 62. https://doi.org/10.3390/mca26030062.