A Novel ξ-Order Hölder Function Classes and Their Integral Transform
Main Article Content
Abstract
We introduce a function class \(\mathcal{H}(\xi)\) (\(\xi > 0\)) capturing tail decay and H\"older regularity. For \(h \in \mathcal{H}(\xi)\), its Fourier transform \(\mathcal{F}[h]\) inherits H\"older continuity of order \(\xi\) and essential boundedness. For \(\xi > 1\), derivatives of \(\mathcal{F}[h]\) up to order \(\lfloor \xi \rfloor\) are \(L^{\infty}\)-bounded, with fractional H\"older continuity arising from \(h\)'s decay. Our approach integrates multiscale analysis and Fourier multiplier theory, extending prior results on H\"older-Fourier correspondences. Novel integral estimates and phase cancellation methods resolve critical gaps in non-integer smoothness characterization. These results deepen the Fourier regularity analysis for non-integer \(\xi\), offering tools for harmonic analysis and pseudo-differential operators.
Article Details
References
- J. Duoandikoetxea Zuazo, Fourier Analysis, American Mathematical Society, Providence, R.I, 2001.
- E.M. Stein, G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, 1972. https://doi.org/10.1515/9781400883899.
- Y. Meyer, Wavelets and Operators, Cambridge University Press (1992).
- M. Ruzhansky, V. Turunen, Pseudo-Differential Operators and Symmetries, Birkhäuser Basel, 2010. https://doi.org/10.1007/978-3-7643-8514-9.
- C. Fefferman, On the Convergence of Multiple Fourier Series, Bull. Amer. Math. Soc. 77 (1971), 744–746. https://doi.org/10.1090/S0002-9904-1971-12793-3.
- L. Grafakos, Classical Fourier Analysis, Springer, (2014).
- H. Triebel, Theory of Function Spaces III, Birkhäuser Basel, 2006. https://doi.org/10.1007/3-7643-7582-5.
- E.M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, 1993. https://doi.org/10.1515/9781400883929.
- C.D. Sogge, Fourier Integrals in Classical Analysis, Cambridge University Press, 1993. https://doi.org/10.1017/CBO9780511530029.