A Novel ξ-Order Hölder Function Classes and Their Integral Transform

Main Article Content

Xiaohui Gao

Abstract

We introduce a function class \(\mathcal{H}(\xi)\) (\(\xi > 0\)) capturing tail decay and H\"older regularity. For \(h \in \mathcal{H}(\xi)\), its Fourier transform \(\mathcal{F}[h]\) inherits H\"older continuity of order \(\xi\) and essential boundedness. For \(\xi > 1\), derivatives of \(\mathcal{F}[h]\) up to order \(\lfloor \xi \rfloor\) are \(L^{\infty}\)-bounded, with fractional H\"older continuity arising from \(h\)'s decay. Our approach integrates multiscale analysis and Fourier multiplier theory, extending prior results on H\"older-Fourier correspondences. Novel integral estimates and phase cancellation methods resolve critical gaps in non-integer smoothness characterization. These results deepen the Fourier regularity analysis for non-integer \(\xi\), offering tools for harmonic analysis and pseudo-differential operators.

Article Details

References

  1. J. Duoandikoetxea Zuazo, Fourier Analysis, American Mathematical Society, Providence, R.I, 2001.
  2. E.M. Stein, G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, 1972. https://doi.org/10.1515/9781400883899.
  3. Y. Meyer, Wavelets and Operators, Cambridge University Press (1992).
  4. M. Ruzhansky, V. Turunen, Pseudo-Differential Operators and Symmetries, Birkhäuser Basel, 2010. https://doi.org/10.1007/978-3-7643-8514-9.
  5. C. Fefferman, On the Convergence of Multiple Fourier Series, Bull. Amer. Math. Soc. 77 (1971), 744–746. https://doi.org/10.1090/S0002-9904-1971-12793-3.
  6. L. Grafakos, Classical Fourier Analysis, Springer, (2014).
  7. H. Triebel, Theory of Function Spaces III, Birkhäuser Basel, 2006. https://doi.org/10.1007/3-7643-7582-5.
  8. E.M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, 1993. https://doi.org/10.1515/9781400883929.
  9. C.D. Sogge, Fourier Integrals in Classical Analysis, Cambridge University Press, 1993. https://doi.org/10.1017/CBO9780511530029.